首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The focus of our work has been to develop a theory of adsorption kinetics for polyelectrolytes in a flow cell onto planar surfaces in the framework of the two-dimensional model and to study adsorption processes of polyelectrolytes on a planar surface by ellipsometry. We have studied the adsorption kinetics of water-soluble cationic poly(vinylamine) hydrochloride homopolymer from aqueous solution onto both silicon wafers and polystyrene films by ellipsometry. Equations were derived to calculate (a) the equilibrium adsorption, (b) the thickness of the adsorbed layer, (c) the activation energy of adsorption for water-soluble polyelectrolytes, (d) the rate constant for the water-soluble polyelectrolytes, (e) the effective coefficients of diffusion in the adsorbed layer, and (f) the time needed to attain the equilibrium state for the adsorption of the water-soluble polyelectrolytes in a flow cell. Copyright 1999 Academic Press.  相似文献   

2.
The effect of molecular mass on the formation of a bilayer structure upon the layer-to-layer adsorption of a cationic polyelectrolyte (poly(dimethyldiallylammonium chloride), molecular mass M = 500000 and 100000-200000 Da) and an anionic polyelectrolyte sodium (poly(acrylate), M = 30000 and 2100 Da) on the surface of fused quartz is studied by the capillary electrokinetic method. The time required to reach constant adsorption values and the structure of bilayer systems depend on the ratio between molecular masses of the cationic and anionic polyelectrolytes. The deformability of the bilayer system significantly exceeds that of the first layer in the case when the second layer is formed from an anionic polyelectrolyte with a lower molecular mass, thus suggesting the loosening of the first adsorption layer of the cationic polyelectrolyte. The adsorption of the anionic polyelectrolyte with higher molecular mass insignificantly affects the density of the first layer. Variation in the deformability of the layer with time (its aging) depends on the ratio between molecular masses of the polyelectrolytes.  相似文献   

3.
The nature of hydrophobic thin cellulose films, formed by Langmuir-Blodgett (LB) deposition on silica, has been studied using neutron reflectivity (NR). The impact of electrolyte and a polyelectrolyte, poly(dimethyldiallylammonium chloride) (polydmdaac), on the adsorption of the anionic surfactant sodium dodecyl sulfate (SDS) onto the surface of the hydrophobic cellulose film and upon the structure of the cellulose film has been investigated. The results show how a combination of polyelectrolytes and electrolyte can be used to manipulate surfactant adsorption onto hydrophobic cellulose surfaces and modify the structure of the cellulose film by swelling and penetration. The results illustrate how polyelectrolytes can be used to reverse adsorption and swelling of cellulose films which are not reversible simply by dilution in solvent.  相似文献   

4.
The adsorption behavior of highly charged cationic polyelectrolytes onto porous substrates is electrostatic in nature and has been shown to be highly dependent on the polyelectrolyte properties. Copolymers of acrylamide (AM) and diallyldimethylammonium chloride (DADMAC) were synthesized to have a range of macromolecular properties (i.e., charge density and molecular mass). Traditional titration methods have been complemented by fluorescence labeling techniques that were developed to directly observe the extent that fluorescently labeled poly(AM- co-DADMAC) adsorbs into the pore structure of a cellulosic substrate. Although contributing to the electrostatic driving force, the charge density acts to limit adsorption to the outermost surface under electrolyte-free conditions. However, adsorption into the pores can occur if both the molecular mass and charge density of poly(AM- co-DADMAC) are sufficiently low. Adsorption initially increases as the electrolyte concentration is increased. However, the electrostatic persistence length of poly(AM- co-DADMAC) restricts the polyelectrolyte from entering the pores. Therefore, changes in the adsorption behavior at moderate electrolyte concentrations have been attributed to swelling of the polyelectrolyte layer at the fiber exterior. The adsorption behavior changes again at high electrolyte concentrations such that poly(AM- co-DADMAC) could adsorb into the pore structure. This occurred when the electrolyte concentration was sufficient to screen the electrostatic persistence length of poly(AM- co-DADMAC), provided that the entropic driving force for adsorption still existed. It is suggested that adsorption into the pore structure is a kinetic process that is governed by localized electrostatic interactions between poly(AM- co-DADMAC) and the charges located within the pores.  相似文献   

5.
The adsorption of cationic polyelectrolytes on colloidal silica-particles is investigated. The polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) PDADMAC of different molar mass have been used. The adsorbed amount is influenced by the ionic strength and pH of the suspension and the molar mass of the macromolecule. The adsorption determines the zetapotential of the covered particles. The electrostatic interaction between the particles as well as the structure of the adsorbed polyelectrolytes play an important role in the stabilization and flocculation behaviour of the polyelectrolyte covered suspensions.  相似文献   

6.
The formation of polyelectrolyte complexes between carboxymethylcellulose and N‐methylated poly(2‐vinylpyridine), at a nonstoichiometric mixing ratio, was studied. Various methods, such as viscometry, turbidimetry, electrophoresis, and optical spectroscopy, were used to investigate the complexes with respect to their composition, structure, and stability in aqueous systems of different ionic strengths. A gel‐like structure was proposed for the nonstoichiometric polyelectrolyte complexes. Two steps of complex formation—ionic bond formation followed by its rearrangement—were identified. The conformational change of the polyelectrolyte chains in the complexes, responsible for the slower and latter step, was followed by viscometry, and the results were interpreted on the basis of a model proposed for the kinetics of swelling of hydrogels. A similarity was found between the kinetics of diffusion of polymer segments responsible for the swelling of a macrogel of a nonionic polymer and the rearrangement of ionic bonds leading to the formation of a nonstoichiometric polyelectrolyte complex el. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2288–2295, 2003  相似文献   

7.
Alternating adsorption of poly(acrylic acid) and a polyethylenimine-Pd(II) complex on alumina and subsequent reduction of Pd(II) by NaBH4 yield catalytic Pd nanoparticles embedded in multilayer polyelectrolyte films. The polyelectrolytes limit aggregation of the particles and impart catalytic selectivity in the hydrogenation of alpha-substituted unsaturated alcohols by restricting access to catalytic sites. Hydrogenation of allyl alcohol by encapsulated Pd(0) nanoparticles can occur as much as 24-fold faster than hydrogenation of 3-methyl-1-penten-3-ol. Additionally, the nanoparticle/polyelectrolyte system suppresses unwanted substrate isomerization, when compared to a commercial palladium catalyst. Selective diffusion through poly(acrylic acid)/polyethlyenimine membranes suggests that hydrogenation selectivities are due to different rates of diffusion to nanoparticle catalysts. First-order kinetics are also consistent with a diffusion-limited mechanism. Further exploitation of the versatility of polyelectrolyte films should increase selectivity in hydrogenation as well as other reactions.  相似文献   

8.
The adsorption of hydrophobically modified polyelectrolytes derived from poly(maleic anhydride-alt-styrene) (P(MA-alt-St)) containing in their side chain aryl-alkyl groups onto amino- or methyl-terminated silicon wafers was investigated. The effect of the spacer group, the chemical nature of the side chain, molecular weight of polyelectrolyte, and ionic strength of solution on the polyelectrolyte adsorbed amount was studied by null ellipsometry. The adsorbed amount of polyelectrolyte increased with increasing ionic strength, in agreement with the screening-enhanced adsorption regime, indicating that hydrophobic interactions with the surface play an important role in the adsorption process. At constant ionic strength, the adsorbed amount was slightly higher for polyelectrolytes with larger alkyl side chain and decreased with the hydrophobicity of aryl group. The adsorption behavior is discussed in terms of the side chain flexibility of the polymer. Characteristics of the adsorbed layer were studied by atomic force microscopy (AFM) and contact angle measurements. AFM images show the presence of aggregates and closed globular structure of polyelectrolyte onto the amino- or methyl-terminated surface, which agrees with a 3D and 2D growth mechanism, respectively. Fluorescence measurements showed that the aggregation of polyelectrolyte containing the hydrophobic naphthyl group occurs already in the solution. However, the aggregation of polyelectrolytes containing the phenyl group in its side chain is not observed in solution but is induced by the amino-terminated surface. This difference can be explained in terms of the higher flexibility of side chain bearing the phenyl group. The polyelectrolyte films showed a high chemical heterogeneity and moderate hydrophobicity.  相似文献   

9.
The effects of charge density, pH, and salt concentration on polyelectrolyte adsorption onto the oxidized surface of silicon wafers were studied using stagnation point adsorption reflectometry and quartz crystal microgravimetry. Five different polyelectrolytescationic polyacrylamides of four charge densities and one cationic dextranwere examined. The adsorption kinetics was characterized using each technique, and the adsorption kinetics observed was in line with the impinging jet theory and the theory for one-dimensional diffusion, respectively. The polyelectrolyte adsorption increased with pH as an effect of the increased silica surface charge. A maximum in the saturation adsorption for both types of polyelectrolytes was found at 10 mM NaCl concentration. A significant adsorption also occurred at 1 M NaCl, which indicated a significant nonionic contribution to the adsorption mechanism. The fraction of solvent in the adsorbed layer was determined to be 70-80% by combining the two analysis techniques. This indicated a loose structure of the adsorbed layer and an extended conformation at the surface, favoring loops and tails. However, considering the solution structure with a hydrodynamic diameter larger than 100 nm for the CPAM and a thickness of the adsorbed layer on the order of 10 nm, the results showed that the adsorption is accompanied by a drastic change in polymer conformation. Furthermore, this conformation change takes place on a time scale far shorter than seconds.  相似文献   

10.
This review deals with the counterion distribution around rod‐shaped polyions, the reaction kinetics in polyelectrolyte solutions, the anomalous behavior of poly(methacrylic acid), and the formation of pearl‐necklace‐like structures of polyelectrolytes in poor solvent media. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1080–1086, 2002  相似文献   

11.
Efficient synthetic strategies are described for the preparation of rodlike polyelectrolytes based on the intrinsically rigid poly(p-phenylene). Uncharged precursors were first prepared via the Suzuki coupling and then characterized by different methods of polymer analysis. Finally, they were transformed into polyelectrolytes using macromolecular substitution reactions. Depending on the substitution pattern, the obtained polyelectrolytes are either soluble or insoluble in water. Using water-soluble derivatives, the Poisson-Boltzmann cell model was tested by osmotic measurements and small-angle X-ray scattering. It is shown that the cell model provides a good first approximation of the distribution of the counterions around the macroion but still underestimates their correlation. Moreover, the PPP polyelectrolytes show a very pronounced polyelectrolyte effect. Since the rodlike PPPs are very rigid in shape, this observation proves that the polyelectrolyte effect is caused by long-range intermolecular electrostatic repulsion of the dissolved macroions rather than due to conformational changes.  相似文献   

12.
CE of biomolecules is limited by analyte adsorption on the capillary wall. To prevent this, monolayer or successive multiple ionic‐polymer layers (SMILs) of highly charged polyelectrolytes can be physically adsorbed on the inner capillary surface. Although these coatings have become commonly used in CE, no systematic investigation of their performance under different coating conditions has been carried out so far. In a previous study (Nehmé, R., Perrin, C., Cottet, H., Blanchin, M. D., Fabre, H., Electrophoresis 2008, 29, 3013–3023), we investigated the influence of different experimental parameters on coating stability, repeatability and peptide peak efficiency. Optimal coating conditions for monolayer and multilayer (SMILs) poly(diallyldimethylammonium) chloride/ poly(sodium 4‐styrenesulfonate) coated capillaries were determined. In this study, the influence of polyelectrolyte concentration and ionic strength of the coating solutions, and the number of coating layers on coating stability and performance in limiting protein adsorption was carried out. EOF magnitude and repeatability were used to monitor coating stability. Coating ability to limit protein adsorption was investigated by monitoring variations of migration times, time‐corrected peak areas and separation efficiency of test proteins. The separation performance of polyelectrolyte coatings were compared with those obtained with bare silica capillaries.  相似文献   

13.
The voltammetric characterisation of aqueous soluble polyelectrolytes at the water∣1,2-dichloroethane interface was investigated. The polyelectrolytes studied included poly (diallyldimethylammonium chloride) (PDADMACl) and polyethylenimine (PEI). The adsorption process followed by the transfer of these polyelectrolytes across the interface was characterised. The observable transfer of the monomer cation of the PDADMA+, namely diallyldimethylammonium (DADMA+) ion, was compared to that of the polyelectrolyte transfer process. Physical data including the diffusion coefficient and the Gibbs energy of transfer across the water∣1,2-dichlorethane interface was evaluated for both the polycation and monocation.  相似文献   

14.
侧链型偶氮聚电解质自组装和膜结构研究   总被引:5,自引:1,他引:4  
研究了4种侧链型偶氮聚电解质的自组装过程及其对自组装膜结构的影响.用聚电解质上的偶氮基团作为“探针”,研究了自组装过程中出现的生色团取向、解吸附和非线性增长等现象.这些侧链型偶氮聚电解质均具有较好的自组装性,但其自组装行为有很大差异.在不同的pH条件下,聚电解质的电离程度不同,导致吸附过程和自组装膜结构亦明显不同.自组装膜的增长和结构取决于体系中吸附和解吸的平衡.偶氮生色团端基的亲水或疏水性对自组装膜的增长有明显的影响.偶氮聚电解质自组装过程不同阶段出现的非线性增长现象,分别反映了基底、溶液性质和聚电解质结构等因素的影响.  相似文献   

15.
Polyelectrolyte multilayer adsorption on mica was studied by the streaming potential method in the parallel-plate channel setup. The technique was calibrated by performing model measurements of streaming potential by using monodisperse latex particles. Two types of polyelectrolytes were used in our studies: poly(allylamine) hydrochloride (PAH), of a cationic type, and poly(sodium 4-styrenesulfonate) (PSS) of an anionic type, both having molecular weight of 70,000. The bulk characteristics of polymers were determined by measuring the specific density, diffusion coefficient for various ionic strengths, and zeta potential. These measurements as well as molecular dynamic simulations of chain shape and configurations suggested that the molecules assume an extended, wormlike shape in the bulk. Accordingly, the diffusion coefficient was interpreted in terms of a simple hydrodynamic model pertinent to flexible rods. These data allowed a proper interpretation of polyelectrolyte multilayer adsorption from NaCl solutions of various concentrations or from 10(-3) M Tris buffer. After completing a bilayer, periodic variations in the apparent zeta potential between positive and negative values were observed for multilayers terminated by PAH and PSS, respectively. These limiting zeta potential values correlated quite well with the zeta potential of the polymers in the bulk. The stability of polyelectrolyte films against prolonged washing (reaching 26 h) also was determined using the streaming potential method. It was demonstrated that the PSS layer was considerably more resistant to washing, compared to the PAH layer. It was concluded that the experimental data were consistent with the model postulating particle-like adsorption of polyelectrolytes with little chain interpenetration. It also was concluded that due to high sensitivity, the electrokinetic method applied can be effectively used for quantitative studies of polyelectrolyte adsorption, desorption, and reconformation.  相似文献   

16.
Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak "protein-like" polyelectrolytes (i.e., polypeptides), poly(L-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0-10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pKa values. The adsorption of HSA onto (PLL/PGA)n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the alpha-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.  相似文献   

17.
In this work the effect of ionic strength on the adsorption behavior of cationic polyelectrolyte (acrylamide-acrylamidopropyltrimethylammonium chloride) and negatively charged silica particles has been studied by means of ellipsometry. The adsorption of the polyelectrolyte was observed to increase with increasing salt concentration, a behavior typical for polyelectrolytes with a screening-reduced solvency and a nonelectrostatic affinity for the surface. A similar dependence on the ionic strength was observed when studying the electrolyte effect on the nanoparticle adsorption to the preadsorbed polyelectrolyte film, suggesting that the polyelectrolyte surface conformations largely govern the binding capacity of the particles to the surface.  相似文献   

18.
Interpolyelectrolyte complex (IPEC) formation between poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) has been studied over a range of ionic strengths by isothermal titration calorimetry (ITC), turbidity titration, and electrostatic layer-by-layer assembly (ELBL). The results indicate that IPEC formation of PSS/PAH in aqueous solution is predominantly entropy-driven. The thermodynamic parameters suggest the formation of different types of complexes and aggregates due to salt-induced conformational changes in the polyelectrolyte conformation. Differences in polyelectrolyte behavior in the different salt-concentration regimes are described in terms of changes in the Debye screening length of the polyelectrolytes. The relationship of the results to the effect of salt concentration on the assembly of polyelectrolyte multilayer films (PEMs) is discussed.  相似文献   

19.
The site-binding model is very useful for describing the adsorption of ions and small ionized molecules. It has been slightly modified to include multi-site adsorption of larger molecules such as oligomers and low molecular weight polyelectrolytes. We describe alterations of the classical model and the results of calculations for adsorption of polyacrylic acid onto titanium dioxide as an example. The triple layer model is used to relate charge densities to interfacial potential profiles. Comparison between adsorption trends and the surface layer composition as a function of pH and ionic strength demonstrates the prominent influence of ions binding in the adsorption process. The site-binding model makes it easy to simulate the ions displacement associated with polyelectrolyte adsorption. Strongly bound electrolyte anions prevent polyacrylic acid from adsorbing, and, in contrast, electrostatic screening due to cation condensation makes it easier. Calculations of the pH change in the solution, due to adsorption, are also made by comparing ionization ratios of both the surface and polymer units in the adsorbed layer and before adsorption. Trends in electrokinetic potentials as a function of the solution's parameters are evaluated assuming the identity of the shearing surface and the inner boundary of the diffuse layer. All data compare well with experimental values. The very good agreement betwen the experiment and model calculations supports the fact that (small) polyelectrolyte molecules adsorb essentially flat on the surface.  相似文献   

20.
The influence of natural polyelectrolytes, sodium alginate and chitosan, on the efficiency of water treatment by flotation to remove fish oil was elucidated by studying the kinetics of formation of adsorption layers at the aqueous polyelectrolyte solution-air and aqueous polyelectrolyte solution-fish oil interfaces. The stability of fish oil emulsions stabilized by sodium alginate and chitosan was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号