首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex perovskite solid solution (1−x) Pb(In1/2Nb1/2)O3-(x) Pb(Ni1/3Nb2/3)O3 has been successfully prepared by the Columbite precursor method. The temperature dependencies of the dielectric constant and pyroelectric coefficient were measured between −261 and 200 °C. Relaxor ferroelectric behavior has been noticed in all compositions across the solid solution. The room-temperature electrostrictive coefficient, Q33, was 1.83×10−2 C2/m4 for x=0.10. No room-temperature piezoelectric activity was detected; however, upon cooling to −261 °C the maximum coupling coefficients kp=29%, kt=11%, and k33=31% were observed for the composition x=1.00.  相似文献   

2.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

3.
Tungsten bronze (TB)-type oxide ceramic Pb0.74K0.13Y0.13Nb2O6 (PKYN) has been synthesized by the standard solid state reaction method. Single phase formation, orthorhombic crystal structure was confirmed by X-ray diffraction (XRD). The substitution of Y3+ in Pb0.74K0.52Nb2O6 (PKN) decreased the unit cell volume and TC=260 °C. PKYN exhibited the remnant polarization, Pr=8.5 μC/cm2, and coercive field, Ec=28.71 kV/cm. Electrical spectroscopy studies were carried out over the temperature (35-595 °C) and frequency (45 Hz-5 MHz) ranges, and the charge carrier phenomenon, grain-grain boundary contribution and non-Debye-type relaxation were analyzed. The relaxation species are immobile charges in low temperature and oxygen vacancies at higher temperature. The theoretical values computed using the relations, ε′=ε+sin(n(T)π/2)(a(T)/ε0)(ωn(T)−1); σ(ω)=σdc+Aωn are fitted with the experimental one. The n and A parameters suggested that the charge carrier's couple with the soft mode and become mobile at TC. The activation enthalpy, Hm=0.38 eV, has been estimated from the hopping frequency relation ωp=ωe exp(−Hm/kBT). The piezoelectric constants Kt=35.4%, d33=69×10−12 C/N, d31=−32×10−3 mV/N, S11E=17.8 pm2/N, etc., achieved in PKYN indicate the material is interesting for transducer applications. The activation energies from different formalisms confirmed the ionic-type conduction.  相似文献   

4.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

5.
Modified BiScO3-PbTiO3 (BSPT) tetragonal single crystals were grown using high temperature solution method. The dielectric, piezoelectric and elastic properties of single domain BSPT crystals, after poling along [001] crystallographic direction, have been determined experimentally using the resonance method. The results showed that the BSPT tetragonal crystals possess good piezoelectric properties, with electromechanical coupling factor about 88% and piezoelectric coefficient over 400 pC/N at room temperature. BSPT tetragonal crystals have high Curie temperature around 436 °C and high coercive field ∼28 kV/cm, also, the crystal exhibited a very good temperature stability of the properties till 380 °C. For comparison, the material constants of tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZNT) single crystals were measured and listed in this paper.  相似文献   

6.
A systematic series of (Ge15Ga10Te75)1−x(CsI)x (x=0, 5, 10, 15 at%) far infrared transmitting chalcohalide glasses were prepared by the traditional melt-quenching method. The physical, thermal and optical properties were determined. The allowed direct transition and indirect transition of samples were calculated according to the Tauc equation. The results show that glass transition temperatures (Tg) were in the range 133-175 °C, with ΔT values between 81 and 130 °C. The highest values of metallization criterion (0.244) and energy gap (1.191 eV) were obtained for (Ge15Ga10Te75)85(CsI)15. When the dissolved amount of CsI increased from 0 to 15 at%, the direct optical band gap and indirect optical band gap were in the ranges 0.629-1.075 eV and 0.438-0.524 eV, respectively. The Ge-Ga-Te-CsI glasses have an effective transmission window between 1.7 and 25 μm, encompassing the region of interest for bio-sensing applications.  相似文献   

7.
We have prepared a series of (PLZT)x(BiFeO3)1−x transparent thin films with thickness of 300 nm by a thermal pyrolysis method. Only films with x≦0.10 formed a single phase of perovskite structure. The film where x=0.10 exhibited both ferromagnetic and ferroelectric properties at room temperature with spontaneous magnetization and coercive magnetic fields of 0.0027μB and 5500 G, respectively. The remanent electric polarization and coercive electric field for the film where x=0.10 were 3.0 μC/cm2 and 24 kV/cm, respectively. Additionally, films with 0.02≦x≦0.10 showed both magneto-optical effects and the second harmonic generation of transmitted light.  相似文献   

8.
SrBi2−xPrxNb2O9 (x=0, 0.04 and 0.2) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase layered perovskite structure ferroelectrics were obtained. A relaxor behavior of frequency dispersion was observed among Pr-doped SrBi2Nb2O9. The degree of frequency dispersion ΔT increased from 0 for x=0-7 °C for x=0.2, and the extent of relaxor behavior γ increased from 0.94 for x=0-1.45 for x=0.2. The substitution of Pr ions for Bi3+ ions in the Bi2O2 layers resulted in a shift of the Curie point to lower temperatures and a decrease in remanent polarization. In addition, the coercive field 2Ec reduced from 110 kV/cm for an undoped specimen to 90 kV/cm for x=0.2.  相似文献   

9.
Jin M  Xu J  Shi M  Wu X  Tong J 《Ultrasonics》2007,46(2):129-132
Novel piezoelectric crystal (1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZNT) has attracted much attention due to its high piezoelectric properties and potential applications in medical ultrasonic devices, sonar transducers, solid state actuators. However, the applications of PZNT crystals are limited by the lack of a simple and reproducible growth technique. In this work, large size PZNT crystals were grown by the vertical Bridgman method using 50 mol% PbO as a flux. The growth conditions were optimized as mole ratio of raw materials and flux = 1:1, soaking temperature 1150-1200 °C, soaking time 10 h, the lowering rate of the crucible 0.5 mm/h and the temperature gradient near solid-liquid interface about 50 °C/mm. The maximum size of as-grown PZNT crystal was about 60 mm in length. The crystal was oriented and its piezoelectric constant d33 and coupling coefficient k33 were measured over 2000 pC/N and 0.92, respectively.  相似文献   

10.
Single crystals of glycine nitrate [(C2H6NO2)+ · (NO3)] were grown using submerged seed solution method. The crystals were characterized by using single crystal X-ray diffraction and density measurements. Spectroscopic, thermal and optical studies were carried out for analyzing the presence of the functional groups, thermal stability, decomposition and transparency of the sample. These studies showed that the crystals are thermally stable upto 145 °C and transparent for the fundamental and second harmonic generation of Nd:YAG (λ = 1064 nm) laser. Second harmonic generation (SHG) conversion efficiency was investigated to explore the NLO characteristics of this material. Microhardness and dielectric studies were also carried out.  相似文献   

11.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

12.
Octacalcium phosphate (OCP) powder was produced by precipitating 250 mL Ca(CH3COO)2 0.04 M into 750 L of phosphate solution (5 mmol Na2HPO4 and 5 mmol NaH2PO4) at a constant temperature of 60 °C and pH 5, which resulted in a dry white powder. X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the electron diffraction pattern (SAED) all showed only OCP. Hydroxyapatite (HAP) was directly obtained through hydrolysis of the powder. The total transformation of OCP into HAP was registered over a period of 6 h. During the first 30 min of hydrolysis both phases coexisted. The two phases and the OCP-HAP interface were structurally analyzed through XRD and TEM. OCP parameters (calculated by the Rietveld method) are a=19.70, b=9.50, c=6.85 Å; α=90.03°, β=92.48°, γ=108.32° (triclinic P-1) with average crystal size of 13.5±0.2 nm, while HAP parameters were a=9.45, c=6.87 Å (hexagonal P63/m) with average crystal size of 16.9±0.2 nm.  相似文献   

13.
Ba0.6Sr0.4TiO3 ceramics were prepared by a citrate precursor method. The structure and nonlinear dielectric properties of the resulting ceramics were investigated within the sintering temperature range 1200-1300 °C. Adopting fine Ba0.6Sr0.4TiO3 powder derived from the citrate method was confirmed to be effective in reducing the sintering temperatures required for densification. The ceramic specimens sintered at 1230-1280 °C presented relative densities of around 95%. A significant influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric behavior among the specimens sintered at different temperatures was qualitatively interpreted in terms of the dielectric response of polar micro-regions under bias electric field. The specimens sintered at 1230 and 1250 °C attained superior nonlinear dielectric properties, showing relatively low dielectric losses (tan δ) of 0.24% and 0.22% at 10 kHz together with comparatively large figure of merits (FOM) of 121 and 142 at 10 kHz and 20 kV/cm, respectively.  相似文献   

14.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

15.
Sodium acid phthalate (SAP), an efficient semi-organic crystal having dimensions 17×8×2 mm3 has been grown from aqueous solution by slow evaporation technique at room temperature within the period of 2 weeks. The lattice parameters of the grown crystals were determined using single-crystal X-ray diffraction analysis. The presence of functional groups was estimated qualitatively by Fourier transform infrared (FTIR) analysis. The band gap energy was determined using optical absorption studies. The TG/DTA analysis reveals that the SAP crystal is thermally stable up to 141.6 °C. The dielectric constant and dielectric loss was studied as a function of frequency and the corresponding activation energy (Ea) has been calculated for the grown crystal. Scanning electron microscope studies enunciate the ferroelectric domain patterns of the SAP crystal. Ferroelectric property of the grown crystal was confirmed by hysteresis loop studies.  相似文献   

16.
This paper presents the latest development of a lead-free piezoelectric ceramic and its application to transducers suitable for high-frequency ultrasonic imaging. A lead-free piezoelectric ceramic with formula of (K0.5Na0.5)0.97Li0.03(Nb0.9 Ta0.1)O3 (abbreviated as KNLNT-0.03/0.10) was fabricated and characterized. The material was found to have a clamped dielectric constant ε33S/ε0 = 890, piezoelectric coefficient d33 = 245 pC/N, electromechanical coupling factor kt = 0.42 and Curie temperature Tc > 300 °C. High-frequency (40 MHz) ultrasound transducers were successfully fabricated with the lead-free material. A representative lead-free transducer had a bandwidth of 45%, two-way insertion loss of -18 dB. This performance is comparable to reported performances of popular lead-based transducers. The comparison results suggest that the lead-free piezoelectric material may serve as an alternative to lead-based piezoelectric materials for high-frequency ultrasonic transducer applications.  相似文献   

17.
The relations among the densification, microstructural evolution, and microwave dielectric properties of the (1−x)CaTiO3-xLaGaO3 ceramics with x=0.34 and 0.36 were investigated in this study. The results indicated that (1−x)CaTiO3−xLaGaO3 ceramics can be densified at 1300 °C with at least 97% of the theoretical value. The ceramics reported an orthorhombic perovskite structure, and no other detectable phases were found. Both εr and Q×f values can be improved by slowing the cooling rate during sintering. The εr and Q×f values of the 0.64CaTiO3-0.36LaGaO3 ceramics at cooling rates of >10 °C/min and 0.1 °C/min are 48.1 and 27,500 and 48.7 and 38,000, respectively. The higher densification obtained at a slower cooling rate plays an important role in improving the microwave dielectric properties.  相似文献   

18.
0.65Pb(In1/2Nb1/2)O3-0.35PbTiO3 (PINT65/35) (starting composition) single crystals were grown successfully through the solution Bridgman technique using PbO flux and PMNT67/33 seed crystals. Because of the composition variation, the final composition of achievable crystals is in a range of 0.32-0.34 with the corresponding Tc range of 265-269 °C. The (001) plates of as-grown PINT66/34 single crystals show high Curie temperature (Tc=269 °C) and rhombohedral-tetragonal phase transition temperature (Trt=134 °C). Besides, good electrical properties with high dielectric constant (ε>3000), low dielectric loss (tan δ∼1.2%), high piezoelectric constant (d33∼2000 pC/N) and large electromechanical coupling factor (kt≈59%) at room temperature have been obtained on the (001) plates. The sound velocity, acoustic impedance and other piezoelectric parameters were also measured on the (001) plates in this study, which provide us more detailed information about PINT66/34 single crystals.  相似文献   

19.
Strontium and calcium-modified lead titanate (Pb0.70Ca0.15Sr0.15)TiO3 soft chemistry-derived thin films were prepared on platinum-coated silicon substrate by spin-coating method. Investigations were made on the structure, surface morphology and electrical properties of the film. The results by XRD and FE-SEM showed that the film exhibits a pure tetragonal perovskite phase and an average grain size of about 50-60 nm, respectively. Electrical measurements of a metal-ferroelectric-metal type capacitor exhibited a stable and switchable electrical polarization in the film. The structure of the Au/PCST/Pt capacitor showed well-saturated hysteresis loops at an applied voltage of 300 kV/cm with remanent polarization and coercive field values of 22 μC/cm2 and 100 kV/cm, respectively. At 100 kHz, the dielectric constant and the dielectric loss of the (Pb0.70Ca0.15Sr0.15)TiO3 thin film with thickness 240 nm were 528 and 0.05, respectively.  相似文献   

20.
Six types of BiFeO3 ceramic samples, with subtle differences in synthesis conditions, were prepared. The comparison of their phases, electrical resistivity, and porosity revealed that the use of Bi2O3 and Fe2O3 powders of <1 μm size and a rapid liquid-phase sintering process of 855 °C for 5 min at 100 °C/s is beneficial to synthesize poreless single-phase BiFeO3 samples with high electrical resistivity of ∼5×1012 Ω cm. Deoxygenated BixFeyO1.5x+1.5yδ (xy, δ≥0) impurities were identified and found to be the main cause of low electrical resistivity and high porosity in the multi-phase samples. Large saturation polarization of 16.6 μC/cm2 and low leakage current density of 30 mA/m2, both at a high electric field of 145 kV/cm, were measured in the optimized single-phase samples at room temperature besides a large piezoelectric d33 coefficient of 27 pC/N and an obvious canted antiferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号