首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plant proteome databases were mined for a flavin monooxygenase (YUCCA), tryptophan decarboxylase (TDC), nitrilase (NIT), and aldehyde oxidase (AO) enzymes that could be involved in the tryptophan-dependent pathway of auxin biosynthesis. Phylogenetic trees for enzyme sequences obtained were constructed. The YUCCA and TDC trees showed that these enzymes were conserved across the plant kingdom and therefore could be involved in auxin synthesis. YUCCAs branched into two clades. Most experimentally studied YUCCAs were found in the first clade. The second clade which has representatives from only seed plants contained Arabidopsis sequences linked to embryonic development. Therefore, sequences in this clade were suggested to be evolved with seed development. Examination of TDC activity and expression had previously linked this enzyme to secondary products synthesis. However, the phylogenetic finding of a conserved TDC clade across land plants suggested its essential role in plant growth. Phylogenetic analysis of AOs showed that plants inherited one AO. Recent gene duplication was suggested as AO sequences from each species were similar to each other rather than to AO from other species. Taken together and based on the experimental support of the involvement of AO in abscisic synthesis, AO was excluded as an intermediate in IAA production. Phylogenetic tree for NIT showed that the first clade contained sequences from species across the plant kingdom whereas the second branch contained sequences from only Brassicaceae. Even though NIT4 orthologues were conserved in the second clade, their major role seems to be detoxification of hydrogen cyanide rather than producing IAA.  相似文献   

2.
The discovery, from Nature, of a large and diverse set of nitrilases is reported. The utility of this nitrilase library for identifying enzymes that catalyze efficient production of valuable hydroxy carboxylic acid derivatives is demonstrated. Unprecedented enantioselectivity and substrate scope are highlighted for three newly discovered and distinct nitrilases. For example, a wide array of (R)-mandelic acid derivatives and analogues were produced with high rates, yields, and enantiomeric excesses (95-99% ee). We also have found nitrilases that provide direct access to (S)-phenyllactic acid and other aryllactic acid derivatives, again with high yields and enantioselectivities. Finally, different nitrilases have been discovered that catalyze enantiotopic hydrolysis of 3-hydroxyglutaronitrile to afford either enantiomer of 4-cyano-3-hydroxybutyric acid with high enantiomeric excesses (>95% ee). The first enzymes are reported that effect this transformation to furnish the (R)-4-cyano-3-hydroxybutyric acid which is a precursor to the blockbuster drug Lipitor.  相似文献   

3.
Polyphenol oxidases (PPOs) are widely distributed enzymes among animals, plants, bacteria, and fungi. PPOs often have significant role in many biologically essential functions including pigmentation, sclerotization, primary immune response, and host defense mechanisms. In the present study, forty-seven full-length amino acid sequences of PPO from bacteria, fungi, and plants were collected and subjected to multiple sequence alignment (MSA), domain identification, and phylogenetic tree construction. MSA revealed that six histidine, two phenylalanine, two arginine, and two aspartic acid residues were highly conserved in all the analyzed species, while a single cysteine residue was conserved in all the plant and fungal PPOs. Two major sequence clusters were constructed by phylogenetic analysis. One cluster was of the plant origin, whereas the other one was of the fungal and bacterial origin. Motif GGGMMGDVPTANDPIFWLHHCNVDRLWAVWQ was found in all the species of bacterial and fungus sources. In addition, seven new motifs which were unique for their group were also identified.  相似文献   

4.
Polyynes (polyacetylenes), which are produced by a variety of organisms, play important roles in ecology. Whereas alkyne biosynthesis in plants, fungi, and insects has been studied, the biogenetic origin of highly unstable bacterial polyynes has remained a riddle. Transposon mutagenesis and genome sequencing unveiled the caryoynencin (cay) biosynthesis gene cluster in the plant pathogen B. caryophylli, and homologous gene clusters were found in various other bacteria by comparative genomics. Gene inactivation and phylogenetic analyses revealed that novel desaturase/acetylenase genes mediate bacterial polyyne assembly. A cytochrome P450 monooxygenase is involved in the formation of the allylic alcohol moiety, as evidenced by analysis of a fragile intermediate, which was stabilized by an in situ click reaction. This work not only grants first insight into bacterial polyyne biosynthesis but also demonstrates that the click reaction can be employed to trap fragile polyynes from crude mixtures.  相似文献   

5.
House dust mites are microarthropods implicated in the cause of allergic diseases. Currently, there is no phylogenetic analysis of dust mites based on genomic or mitochondrial DNA (mtDNA) evidence. For the first time, we report evolutionary relationships based on partial mtDNA 12S rRNA sequences among the four dust mite families Pyroglyphidae (Dermatophagoides pteronyssinus), Glycyphagoidea (Glycyphagus privatus), Acaridae (Aleuroglyphus ovatus), and Echimyopodidae (Blomia tropicalis). Thirteen sequence variants were obtained and phylogenetic analysis showed two monophyletic clades composed of two species each. Contrary to current taxonomic classification, the Acaridae clustered in a monophyletic group with the Pyroglyphidae. Considering the current difficulties in identifying these medically important species for the purpose of eradication and treatment, it is significant that sequence data are capable of discriminating between species belonging to different families of dust mites.  相似文献   

6.
Fusarium is a large fungi genus of a large variety of species and strains which inhabits soil and vegetation. It is distributed worldwide and affiliated to both warm and cold weather. Fusarium oxysporum species, for instance, cause the Fusarium wilt disease of plants, which appears as a leaf wilting, yellowing and eventually plant death. Early detection and identification of these pathogens are very important and might be critical for their control. Previously, we have managed to differentiate among different fungi genera (Rhizoctonia, Colletotrichum, Verticillium and Fusarium) using FTIR-ATR spectroscopy methods and cluster analysis. In this study, we used Fourier-transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy to discriminate and differentiate between different strains of F. oxysporum. The result obtained was of spectral patterns distinct to each of the various examined strains, which belong to the same species. These differences were not as significant as those found between the different genera species. We applied advanced statistical techniques: principal component analysis (PCA) and linear discriminant analysis (LDA) on the FTIR-ATR spectra in order to examine the feasibility of distinction between these fungi strains. The results are encouraging and indicate that the FTIR-ATR methodology can differentiate between the different examined strains of F. oxysporum with a high success rate. Based on our PCA and LDA calculations performed in the regions [900-1775 cm(-1), 2800-2990 cm(-1), with 9 PCs], we were able to classify the different strains with high success rates: Foxy1 90%, Foxy2 100%, Foxy3 100%, Foxy4 92.3%, Foxy5 83.3% and Foxy6 100%.  相似文献   

7.
A DNA fragment containing the entire coding sequence of nitrilase gene was amplified from Rhodococcus rhodochrous tg1-A6 with high nitrilase activity using PCR and sequenced. The open reading frame of the nitrilase gene contains 1,101 base pairs, which encodes a putative polypeptide of 366 amino acid residues. The nitrilase gene was cloned into an expression vector pET-28a and expressed in an Escherichia coli strain BL21(DE3). The enzymatic activity of nitrilase, which converts various nitriles to the corresponding carboxylic acids, was detected to reach 24.5 U/ml at 9 h in the recombinant bacteria.  相似文献   

8.
Early, rapid, and reliable bacterial identification is of great importance in natural environments and in medical situations. Numerous studies have shown that Raman spectroscopy can be used to differentiate between different bacteria under controlled laboratory conditions. However, individual bacteria within a population exhibit macromolecular and metabolic heterogeneity over their lifetime. Therefore it is important to be able to identify and classify specific bacteria at different time points of the growth cycle. In this study, four species of bacteria were used to explore the capability of confocal Raman spectroscopy as a tool for the identification of (and discrimination between) diverse bacterial species at various growth time points. The results show that bacterial cells from different growth time points (as well as from a random growth phase) can be discriminated among the four species using principal component analysis (PCA). The results also show that bacteria selected from different growth phases can be classified with the help of a prediction model based on principal component and linear discriminant analysis (PC-LDA). These findings demonstrate that Raman spectroscopy with the application of a PC-LDA model rooted in chemotaxonomic analysis has potential for rapid sensing of microbial cells in environmental and clinical studies.  相似文献   

9.
High mobility group (HMG) proteins are the major architectural proteins. Among HMG proteins, High Mobility Group A (HMGA) is characterized by AT-hook (ATH) motifs, which have an affinity for AT-rich DNA. In this study, we characterized the plant HMGAs from the Poaceae family using in silico methods. The protein sequences for rice HMGAs were retrieved and the corresponding orthologs from grasses were extracted. The phylogenetic analysis identified three major evolutionary clades of grass HMGAs and their ATH motif analysis revealed that HMGAs from clade 1 and 2, except for clade 2 HMGAs, are devoid of high-affinity DNA-binding domain. The clade 2 HMGAs also displayed a highly conserved length of all the spacers and the length of the C-terminal tail following the last ATH. Moreover, the C-terminal tail in clade 2 HMGAs is smaller than HMGAs from any other clade. Unlike clade 2, other clades of Poaceae HMGAs displayed high variability in the length of spacers. Despite several differences among HMGAs of different clades in Poaceae, the H1/H5 domain was found to be highly conserved. This study has revealed the detailed analyses of Poaceae HMGAs and it will be useful for further investigation aiming at the determination of precise biological functions and molecular mechanisms of grass HMGAs.  相似文献   

10.
Flavin‐based photoreceptor proteins of the LOV (light, oxygen and voltage) superfamily are ubiquitous and appear to be essential blue‐light sensing systems not only in plants, algae and fungi, but also in prokaryotes, where they are represented in more than 10% of known species. Despite their broad occurrence, only in few cases LOV proteins have been correlated with important phenomena such as bacterial infectivity, selective growth patterns or/and stress responses; nevertheless these few known roles are helping us understand the multiple ways by which prokaryotes can exploit these soluble blue‐light photoreceptors. Given the large number of sequences now deposited in databases, it becomes meaningful to define a signature for bona fide LOV domains, a procedure that facilitates identification of proteins with new properties and phylogenetic analysis. The latter clearly evidences that a class of LOV proteins from alpha‐proteobacteria is the closest prokaryotic relative of eukaryotic LOV domains, whereas cyanobacterial sequences cluster with the archaeal and the other bacterial LOV domains. Distance trees built for LOV domains suggest complex evolutionary patterns, possibly involving multiple horizontal gene transfer events. Based on available data, the in vivo relevance and evolution of prokaryotic LOV is discussed.  相似文献   

11.
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. They have been identi?ed in two orders of fungi and three families of higher plants. The most important producers are fungi of the genera Claviceps, Penicillium and Aspergillus (all belonging to the Ascomycota). Chemically, ergot alkaloids are characterised by the presence of a tetracyclic ergoline ring, and can be divided into three classes according to their structural features, i.e. amide- or peptide-like amide derivatives of D-lysergic acid and the clavine alkaloids. Signi?cant progress has been achieved on the molecular biological and biochemical investigations of ergot alkaloid biosynthesis in the last decade. By gene cloning and genome mining, gene clusters for ergot alkaloid biosynthesis have been identi?ed in at least 8 different ascomycete species. Functions of most structure genes have been assigned to reaction steps in the biosynthesis of ergot alkaloids by gene inactivation experiments or biochemical characterisation of the overproduced proteins.  相似文献   

12.
拉曼镊子结合多元统计方法分析两种人体滴虫的差异性   总被引:1,自引:0,他引:1  
应用单细胞激光拉曼光谱分析技术,对不同来源的阴道毛滴虫和口腔毛滴虫的拉曼光谱数据进行减背景、平滑、基线校正、归一化等处理后做主成分分析(PCA)和辨别函数分析(DFA)等多元统计分析.平均光谱和PCA分析结果表明,阴道毛滴虫和口腔毛滴虫差异最为明显是 1002 cm<'-1>峰,其次,差异相关性最大的还有9个拉曼谱峰7...  相似文献   

13.
Catechol-O-methyltransferase (COMT) has a vital role for degradation of dopamine, a neurotransmitter, and this dopamine performs an important function in our mental and physical health. The scarcity of dopamine may lead to Parkinson??s disease, and inhibition of COMT can stop dopamine metabolism. Here, we have carried out genomics and proteomics analyses of COMT in order to facilitate new inhibitors of COMT. For genomics analyses, we performed codon composition investigation of COMT gene which shows A+T content which is 53.3?%. For proteomics analyses, conservation patterns and residues (highly conserved amino acids GLU64, LEU65, GLY66, CYS69, GLY70, ALA77, GLU90, THR99, SER119, ASP136, LEU140, ASP141, THR164, ASN170, VAL171, and ILE172), binding grooves, binding pockets, binding and conformation with substrate, evaluation of amino acid composition (15?% leucine rich), high scoring hydrophobic segments, high scoring transmembrane segments, tandem and periodic repeats, and disulfide bonds (three numbers), sequence logos (maximum stack height of 3 b and minimum stack height of <0.5 b) have been investigated for COMT protein. Furthermore, using COMT sequences of different species (class Mammalia, class Amphibia, and class Pisces), a phylogenetic tree has been constructed to examine the evolutionary relationship among different species.  相似文献   

14.
15.
This paper attempts to reconstruct the phylogeny of azoreductase enzyme from different organisms and compare it with the small subunit rRNA-based phylogeny of the organisms. The two phylogenies were found to be incongruent, indicating several events of lateral transfer of azoreductase gene between phylogenetically diverse organisms. However, the phylogenetic analysis methods have several limitations and a single method may not give the true pattern. Hence, it is necessary to corroborate the results with other complementary analysis tools. We used several tools to test our hypothesis of lateral transfer and found that it was supported not only by the analysis of the whole sequences, but also by the conserved motifs detected in these sequences. There were ample evidences for lateral transfer of azoreductase gene among enteric bacteria. There were also indications that azoreductase probably evolved in prokaryotes and then it was laterally transferred to eukaryotes in multiple events, resulting in some sequence variation among eukaryotic azoreductases. Finally, profile HMMs and conserved motifs extracted from these azoreductase sequences were found to provide sensitive tools for identifying potential azoreductases from the database. The analysis techniques used in this study can be extended to other gene trees to verify their evolutionary histories.  相似文献   

16.
从20种天然氨基酸的1369种性质参数经主成分分析得出一种新多肽序列表征方法——SZOTT. 将其用于71个不同长度肽序列表征, 以偏最小二乘(PLS)和支持向量机(SVM)建立定量结构-保留模型(QSRM). 研究表明, SZOTT能够较好表征71个肽序列特征, 其含信息量大且易操作, 与PLS相比, SVM对lgk建模预测表现出较强的拟合能力和良好外部预测能力, SZOTT表征方法和SVM建模可进一步用于肽HPLC保留行为研究.  相似文献   

17.
Secondary metabolites are a range of bioactive compounds yielded by bacteria, fungi and plants, etc. The published archaea genomic data provide the opportunity for efficient identification of secondary metabolite biosynthetic gene clusters (BGCs) by genome mining. However, the study of secondary metabolites in archaea is still rare. By using the antiSMASH, we found two main putative secondary metabolite BGCs, bacteriocin and terpene in 203 Archaea genomes. Compared with the genomes of Euryarchaeota that usually lives in less complexity of environment, the genomes of Crenarchaeota usually contained more abundant bacteriocin. In these archaea genomes, we also found the positive correlation between the abundance of bacteriocin and the abundance of CRISPR spacer, suggesting the bacteriocin might be a crucial component of the innate immune system that defense the microbe living in the common environment. The structure analysis of the bacteriocin gene clusters gave a clue that the assisted genes located at the edge of clusters evolved faster than the core biosynthetic genes. To the best of our knowledge, we are the first to systematically explore the distribution of secondary metabolites in archaea, and the investigation of the relationship between BGC and CRISPR spacer expands our understanding of the evolutionary dynamic of these functional molecules.  相似文献   

18.
Protein sequence space is vast compared to protein fold space. This raises important questions about how structures adapt to evolutionary changes in protein sequences. A growing trend is to regard protein fold space as a continuum rather than a series of discrete structures. From this perspective, homologous protein structures within the same functional classification should reveal a constant rate of structural drift relative to sequence changes. The clusters of orthologous groups (COG) classification system was used to annotate homologous bacterial protein structures in the Protein Data Bank (PDB). The structures and sequences of proteins within each COG were compared against each other to establish their relatedness. As expected, the analysis demonstrates a sharp structural divergence between the bacterial phyla Firmicutes and Proteobacteria. Additionally, each COG had a distinct sequence/structure relationship, indicating that different evolutionary pressures affect the degree of structural divergence. However, our analysis also shows the relative drift rate between sequence identity and structure divergence remains constant.  相似文献   

19.
A rapid test of whether a laboratory sample contains any microorganisms is important and necessary for many areas of science and technology. Currently, most of the standard procedures for the detection of aerobic bacteria, anaerobic bacteria and fungi, require the preparation of microbial cultures in respective growth media, which are dramatically slow. Different approaches providing fast analysis such as CE are becoming more desired. To compensate for the natural electrophoretic heterogeneity of microbes, various buffer additives were examined to stack all bacteria and fungi in a sample plug into a single peak. This peak was removed from the molecular contaminants in the sample to prevent false positives. Both cationic surfactants and ionic liquids (IL) were investigated as run buffer additives and they are both widely applicable to different species of bacteria and fungi. Given that high concentrations of surfactants can potentially lyse cells, dicationic IL offer attractive auxiliary buffer additives for use in CE-based sterility tests. The analysis can be completed in 10 min, thus providing a great advantage over traditional direct inoculation methods that require several weeks to complete.  相似文献   

20.
A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000 strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H−13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole ( 1 ) possessing an unprecedented cyclopentane, permafroxazole ( 2 ) bearing a tetraene conjugated with carboxylic acid, tenebriazine ( 3 ) incorporating two modified amino acids, and methyl-oxazolomycins A and B ( 4 and 5 ). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B ( 4 and 5 ) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号