首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosylation of trimethylsilyl derivative of 1-(4-nitrobenzyl)-5-carbamoylimidazolium-4-olate ( 5 ) with 1,2,3,5-tetra-O-acetyl-β- D -ribofuranose in the presence of stannic chloride and trimethylsilyl trifluoromethanesulfonate afforded no 5-O-glycosides but N-1 ribosylated compound ( 6 ). However, 5-O-riboside ( 7a ) and its orthoamide derivative ( 8 ) were given by glycosylation of tri-n-butylstannyl derivative of 5 with 2,3,5-tri-O-acetyl-β- D -ribofuranosyl chloride in the presence of silver trifluoromethanesulfonate. This procedure was successfully applied to other sugars and 5-O-glucuronide ( 11 ), a possible metabolite of 1 in vivo, was obtained as one of the 5-O-glycoside derivatives.  相似文献   

2.
Acylation of 4-carbamoylimidazolium-5-olate ( 2 ) with a variety of acid chlorides produced 4(5)-carbamoyl-1H-imidazol-5-(4)yl acid carboxylates ( 3a-j ). Treatment of esters 3a,c with sodium hydroxide gave imides, 4a,c . Methylation of 3a and 2 with diazomethane gave the N-3 methyl derivative ( 6 ) and a mixture of the N-3, O-dimethyl derivative ( 9 ), the N-1, N-3-dimethyl derivative ( 10 ) and the O-methyl derivative ( 11 ), respectively. 5-Carbamoyl-1-methylimidazolium-4-olate ( 7 ) and its 4-carbamoyl isomer ( 16 ) were prepared from 2-aminopropanediamides 8 and 15 , respectively. Treatment of the imidazolium compound ( 10 ) with aqueous potassium hydroxide gave the recyclized product, 1-methyl-5-methylcarbamoylimidazolium 4-olate ( 18 ). Methyl derivatives 6, 7 , and 9 except 16 demonstrated the complete lack of antitumor activity against Lewis lung carcinoma or sarcoma 180 in mice.  相似文献   

3.
The reaction of the silylated base of 1,2-benzisoxazol-3(2H)-one ( 1 ) and its 7-methyl derivative 5 and 5-methyl-1,2-benzisothiazol-3(2H)-one ( 9 ), respectively, with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose followed by basic deprotection gave the corresponding β-D-ribonucleosides, and the silylated base of 1 , when treated with 1-O-acetyl-2,3,5-tri-O-benzoyl-α-D-arabinofuranose in the presence of stannic chloride, afforded the corresponding α-arabinonucleoside. Structural proofs of these nucleosides are provided from elemental analyses and 1H and 13C nmr spectra.  相似文献   

4.
The total synthesis of 6-amino-1,2,3-triazolo[4,5-c]pyridin-4(5H)one (8-aza-3-deazaguanine, 3 ) and 6-amino-1-(β-D-ribofuranosyl)-1,2,3-triazolo[4,5-c]pyridin-4(5H)one (8-aza-3-deazaguano-sine, 22 ) has been described for the first time by a novel base-catalyzed ring closure of 4(5)-cyanomethyl-1,2,3-triazole-5(4)carboxamide (14) and methyl 5-cyanomethyl-1-(2,3,5-tri-O-ben-zoyl-β-D-ribofuranosyl)-1,2,3-triazole-4-carboxylate (17) , respectively. Under the catalysis of DBU, 2,4-dinitrophenylhydrazone of dimethyl 1,3-acetonedicarboxylate (7) was converted to methyl 5-methoxycarbonylmethyl-1-(2,4-dinitroanilino)-1,2,3-triazole-4-carboxylate (12) via dimethyl 2-diazo-3-iminoglutarate (8) . Catalytic reduction of 12 gave methyl 4(5)methoxycar-bonylmethyl-1,2,3-triazole-5(4)carboxylate (11) from which methyl 4(5)carbamoylmethyl-1,2,3-triazole-5(4)carboxylate (10) was obtained by ammonolysis. Dehydration of 10 provided methyl 4(5)cyanomethyl-1,2,3-triazole-5(4)carboxylate (13) which on amination gave 14 . The 1,2,3-triazole nucleosides 17, 18 and 19 were obtained from the stannic chloride-catalyzed condensation of the trimethylsilyl 13 and a fully acylated β-D-ribofuranose. The yield and ratio of the ribofuranosyl derivatives of 13 markedly depends on the ratio of stannic chloride used. The structures of the nucleosides 22 and 23 were established by a combination of NOE, 1H-nmr and 13C-nmr spectroscopy.  相似文献   

5.
2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

6.
Summary. 2-(Arylamino)pyrimidin-4-ones were synthesized, silylated, and condensed with l,2,3,5-tetra-O-acetyl-β- d-ribofuranoside to afford the corresponding N 2-aryl protected isocytidines. Deprotection of the acetylated isocytidines using saturated NH3 in MeOH solution gave 1-(β-d-ribofuranosyl)-2-(arylamino)-4-pyrimidinones. Methyl 2-deoxy-3,5-di-O-toluyl-α/β-d-ribofuranoside was prepared and condensed with the previously silylated bases to afford the anomeric mixture of protected nucleosides. The pure β-anomers were synthesized with better yield by treating the sodium salts of N 2-arylisocytosine derivatives with 2-deoxy-3,5-di-O-toluyl-α-d-ribofuranosyl chloride. Deprotection of the latter anomers afforded the corresponding free hydroxyl derivatives. The synthesized free nucleosides are under antiviral and oligonucleotide investigations.  相似文献   

7.
Ribosylation of the trimethylsilyl derivative ( 1b ) of imidazole-2-thione ( 1a ) using either stannic chloride or silver perchlorate as catalyst resulted in the formation of the acylated derivatives of 1-(β-D-ribofuranosyl)imidazole-2-thione ( 3c ) and 1,3-di-(β-D-ribofuranosyl)imidazole-2-thione ( 4c ) with the latter predominating ( 4c:3c , ca. 2:1 ). The diribosylated nucleoside 4c was shown to be the N,N-disubstituted product rather than the N,S-disubstituted product by 1H nmr and 13C nmr spectroscopy. Employment of the iodine-catalyzed fusion procedure reversed the aforementioned product ratios and provided the monoriboside 3c in excellent yield. When the trimethylsilyl derivative ( 5b ) of 2-methylthioimidazole ( 5a ) was reacted with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide ( 2d ) in acetonitrile, the major product was 1,3-di-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-imidazole-2-thione ( 4b ). The formation of 4b in this reaction is thought to arise via the Hilbert-Johnson mechanism.  相似文献   

8.
In the presence of trimethylsilyl trifluoromethanesulfonate, a methylene chloride solution of isoquinoline and benzoyl chloride gave N-benzoylisoquinolinium triflate ( 3 ) and N-H-isoquinolinium triflate ( 4 ). Depending on the reaction conditions, reaction of 3 may occur on the isoquinoline ring yielding a Reissert compound and 1,2-dihydroisoquinoline species. Otherwise, reactions transpire on the carbonyl of 3 to give an amide, an ester, and an anhydride.  相似文献   

9.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

10.
Detail account of the synthesis of 3′-azido nucleosides utilizing 3-azido-2,3-dideoxy-D-ribose derivative 7 as the key intermediate was described. The key intermediate 7 was synthesized from D-mannitol in 8 steps in a preparative scale. The Michael reaction of the azide group with α,β-unsaturated-γ-butyrolactone 4 was affected by the steric bulkiness of the substituent at the 5-O position. A bulky t-butyldiphenylsilyl substitution at 5-O gave almost exclusively the α-azido adduct 5b , while unsubstitution at 5-O produced 1:1 mixture of α-and β-adducts. The ratio of α to β anomers in the condensation between azido acetate 7a and pyrimidine bases for the preparation of AZT and AZDU was greatly influenced by the solvent and the Lewis acid catalyst used. In the synthesis of 12 (AZDU, CS-87), the combination of dichloroethane and trimethylsilyl triflate gave an optimal result, while in the case of 14 (AZT), various conditions gave similar ratio of α,β anomers. The azido intermediate 7b was also utilized for the synthesis of several 3′-azido purine-like nucleosides 16–27 . The glycosylation was also affected by the Lewis acid catalyst. Boron trifluoride etherate gave the desired N1-glycosylated compounds in which the α-anomer was major, but other catalysts such as trimethylsilyl triflate or stannic chloride produced N2-glycosylated compounds as the major products. The newly synthesized purine-like compounds have been tested against HIV, however, none of them showed any significant activity.  相似文献   

11.
Quinazoline-2,4(1H,3H)-diones 4 were silylated and condensed with methyl 5-azido-2,5-dideoxy-3-O-(4-methylbenzoyl)-α,β-D-erythro-pentofuranoside (3) using trimethylsilyl trifluoromethanesulfonate (TMS triflate) as the catalyst to afford the corresponding 5′-azidonucleosides 5 . 1-(5-Azido-2,5-dideoxy-α-D-erythro-pentofuranosyl)quinazoline-2,4(1H,3H)-diones 6 and the corresponding β anomers were obtained by treating 5 with sodium methoxide in methanol at room temperature. 6-Methyl-1-(5-amino-2,5-dideoxy-β-D-erythro-pentofuranosyl)quinazoline-2,4(1H,3H)-dione (8) was obtained by treatment of the corresponding azido derivative 7 with triphenylphosphine in pyridine, followed by hydrolysis with ammonium hydroxide.  相似文献   

12.
Stereospecific Synthesis of the Anticancer Agent 5′-Deoxy-5-fluorouridine and its 5′-deuteriated Derivatives 5′-Deoxy-5-fluorouridine (5′-DFUR) has been obtained in high yield and purity by Stereospecific condensation of the anomeric 5¨deoxy-1,2,3-tri- O-acetyl-D-ribofu-ranose with bis(trimethylsilylated)-5-fluorouracil in the presence of trimethylsilyl trifluoromethanesulfonate, and by subsequent cleavage of the acetate protecting groups. A minor by-product of the synthesis, the α-anomeric nucleoside is produced by a (β-α)-epimerization, a procedure which is catalyzed by trimethylsilyl trifluoromethanesulfonate. The corresponding 5′-deuteriated, and 5′,5′-dideuteriated nucleosides have also been synthesized using an analogous way. The synthesis of the sugar components of the latter nucleosides - starting from D-ribose, D-xylose and D-glucose -is also described.  相似文献   

13.
The acid-catalyzed reaction of 6-(N-D-ribityl-3,4-xylidino)uracil ( 1 ) with trimethyl ortho-formate yields a bis(methoxymethylene) derivative ( 2 ), which is readily deprotected to give 5-deazariboflavin ( 3 ). Correspondingly, 5-methyl-5-deazariboflavin ( 6 ) is produced by cyclization of the tetraacetate of 1 with acetyl chloride in the presence of stannic chloride followed by deacetylation.  相似文献   

14.
Chlorides of carboxylic, sulfonic and phosphoric acids proved to convert phenanthrene-9,10-imine into the corresponding rearranged acet- sulfon- and phosphonamidophenanthrene. Trimethylchlorosilane and N,O-bis(trimethylsilyl)acetamide reacted with the imine without destruction of the aziridine ring. The silylated compound could be transferred into the respective N-substituted phenanthrene-9,10-imines when treated with acetyl-, methanesulfonyl-, 4-tosyl- and diethylphosphoryl chloride. A remarkably stable N-chlorophenanthrene-9,10-imine was obtained from the unsubstituted compound and N-chlorosuccinimide.  相似文献   

15.
Synthesis of 2-Substituted Imidazole Nucleosides Condensation of the trimethylsilyl derivatives of 2-substituted diethyl and dimethyl imidazole-4,5-dicarboxylates ( 3–5 and 7–9 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D -ribofuranose ( 2 ) in the presence of trimethysilyl trifluoromethanesulfonate provided the 2-substituted diethyl and dimethyl 1-(2′,3′, 5′-tri-O-benzoyl-β-D -ribofuranosyl)imidazole-4, 5-dicarboxylates 10–15 . These were treated with ammonia to afford the 2-substituted 1-(β-D -ribofuranosyl)imidazole-4,5-dicarboxamides 16–21 . Treatment of 2-methyl-( 16 ) and 2-ethyl-1-(β-D -ribofuranosyl)imidazole-4,5-dicarboxamide ( 17 ) with fuming nitric acid in oleum at ?30° yielded the nitric acid esters 23 and 24 . Besides the esterification of the sugar hydroxyl groups one H-atom of the imidazolecarboxamide function at C(5) in these nucleosides was also substituted by the NO2 group. The conformations in solution of 16 and 23 have been determined by 1H- and 13C-NMR. spectroscopy. These studies indicate that the nucleosides exist in dimethyl-sulfoxide solution preferentially in the S-gg-syn-conformation ( 16 ) and N-gt-conformation ( 23 ). In the crystal structure of nucleoside 23 , the ribose was found to be in the O(1′)endo, C(1′)exo twist conformation. The conformation about C(4′), C(5′) is gauche-trans and the molecule exists in the syn form.  相似文献   

16.
Bromination of 3,5-dimethylpyrazole nucleosides with N-bromosuccinimide gave the corresponding 4-bromo-3,5-dimethylpyrazole, 3-methyl-5-(bromomethyl)pyrazole and 4-bromo-3-methyl-5-(bromomethyl)pyrazole nucleosides. Structural assignments were made on basis of analytical and 1 H nmr spectral data. All of the bromomethylpyrazole nucleosides described showed cytostatic activity against HeLa cell sultures.  相似文献   

17.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

18.
The structures of the silylated DNA bases, bis(trimethylsilyl)thymine (1), bis(trimethylsilyl)cytosine (2), bis(trimethylsilyl)adenine (3) and tris(trimethylsilyl)guanine (4), have been determined. 1 is O-silylated and displays no intermolecular interactions. 2 is silylated at both exocylic O, N positions and forms a chain structure through intermolecular NH…O and NH…N hydrogen bonds. 3 contains two SiMe3 groups, on the exocylic NH and endocyclic N9 position, respectively; of two independent molecules in the asymmetric unit, one dimerises through complementary NH…N hydrogen bonds, while the other forms a strained intramolecular hydrogen bond through the same pair of donor and acceptor centres. 4 incorporates N, N, O–SiMe3 moieties and forms chains via bifurcated CH…O/N hydrogen bonds, while the NH function remains unexploited. The effects of silylation on these pyrimidine and purine ring structures are also discussed in comparison with the native bases.

The structures of the silylated DNA bases, bis-(trimethylsilyl)thymine (1), bis-(trimethylsilyl)cytosine (2), bis-(trimethylsilyl)adenine (3) and tris-(trimethylsilyl)guanine (4), have been determined. While 1 displays no intermolecular interactions. 2 forms a chain structure through intermolecular NH…O and NH…N hydrogen bonds, 3 incorporates two independent molecules in the asymmetric unit, one dimerises through complementary NH…N hydrogen bonds while the other forms a strained intramolecular hydrogen bond through the same pair of donor and acceptor centres and 4 forms chains via bifurcated CH…O/N hydrogen bonds while the NH function remains unexploited.  相似文献   

19.
N‐(Alkoxycarbonyl)‐N‐glycosides (polyoxygenated semicyclic N,O‐acetals) were efficiently synthesized from regular acetyl or methyl glycosides (glucopyranoside, ribofuranoside, arabinofuranoside, and 2‐deoxyribofuranoside) and a carbamate by treatment of trimethylsilyl trifluoromethanesulfonate and 4 Å molecular sieves. It was found that these N‐glycosides underwent Lewis acid catalyzed ring‐opening reactions with silylated nucleophiles to give ring‐opened amino alcohols with good‐to‐high diastereoselectivity. The reactivity order, 2‐deoxyribofuranoside > arabinofuranoside > ribofuranoside > glucopyranoside, was revealed. Ring‐opening reductions were also investigated with silanes or diisobutylaluminium hydride. An appropriate reducing agent was found to be dependent on the N‐glycosides used. A glycosidase inhibitor, (2S,3R,4R)‐2‐hydroxymethylpyrrolidine‐3,4‐diol ( 7 ) was synthesized by means of the reactions.  相似文献   

20.
The method for the synthesis of 5-(2,6-dimethylmorpholino)-1,2,3-thiadiazole-4-carbaldehyde was proposed. Its reaction with sodium 1-amino-4-(N-methyl)carbamoyl-1,2,3-triazol-5-olate proceeds through a tandem of the Cornforth rearrangements. The initially formed azomethine isomerizes into sodium 4"-(2,6-dimethylmorpholino)thiocarbonyl-4-(N-methyl)carbamoyl-1,1"-bis[1,2,3]triazolyl-5-olate, which then rearranges to give sodium 4-{N-[4-(2,6-dimethylmorpholinothiocarbonyl)-1,2,3-triazol-1-yl]carbamoyl}-1-methyl-1,2,3-triazol-5-olate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号