首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Wood plastic composites weathering: Visual appearance and chemical changes   总被引:3,自引:0,他引:3  
The effects of outside and accelerated (xenon-arc and UVA) weathering on the visual appearance and chemical changes of wood plastic composite (WPC) formulations based on high density polyethylene (HDPE) and polypropylene (PP) were investigated. Colorimetry, scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) were employed in this study. The study showed that for both outside and accelerated weathering, longer exposure time increased the degree of color change (and lightness), carbonyl concentrations, and wood loss on weathered WPC surfaces. HDPE-based WPC exhibited decreased lightening, carbonyl concentrations, and wood content loss when compared to PP-based WPC. From this study, relationships between chemical and color changes that occurred during exterior weathering of HDPE-based WPC were established. Oxidation and degradation of wood lignin influenced WPC color changes (lightening) during weathering.  相似文献   

2.
We have determined the activation energies (Ea) of yellowing and gloss loss for a large number of engineering thermoplastics and blends under accelerated weathering conditions. The Ea often depend on the property measured and exposure conditions, although they vary over a fairly small range. Under the CIRA/sodalime-filtered xenon arc conditions most likely to be representative of outdoor exposure, the Ea for gloss loss was ≤5 kcal/mol for all samples tested. The Ea for yellowing was also ≤5 kcal/mol except for SAN and ABS. Evidently the color bodies formed from photo-oxidation of SAN are more sensitive to temperature. A reaction with an Ea of 5 kcal/mol will increase its rate by about 33% for each 10 °C increase in temperature near room temperature. Temperature is an important, but not overwhelming, variable in the weathering of most engineering thermoplastics.  相似文献   

3.
Natural (outdoor) weathering test was performed to investigate the UV stability of thin films (0.06 mm) of linear low density polyethylene (LLDPE) and low density polyethylene (LDPE). The PE films were prepared from various formulations of LLDPE and LDPE resins. Some of these films contained a single high molecular mass HALS only, along with a primary antioxidant (i.e. Irganox 1010) and a secondary antioxidant (i.e. Irgafos 168 or Alkanox TNPP), while others contained HALS and UVA (i.e. Chimassorb 81 or Tinuvin P or Tinuvin 326) along with these antioxidants. The HALS used was either an oligomeric or a synergistic mixture of a high molecular mass (HMM) hindered amine stabilizer and co-additives. The UV stability was investigated by exposing the prepared films at 45° towards south in the direct sunshine up to 365 days. Fifty percent of tensile strength retention was determined for all these exposed films and it was found that the films containing a single HALS gained improved UV stability by about two to 12 fold over the pure films. On the other hand, films that contained a combination of HALS and UVA obtained further improved UV stability over the films containing a single HALS (both have antioxidants). Films containing a single HALS reached 50% TS retention within 205 days, whereas, films containing a combination of HALS and UVA reached 50% TS retention within 590 days, which is about three times further improvement in UV stability.  相似文献   

4.
The effects of ultraviolet (UV) photons at different wavelengths (namely UVA, UVA + B and UVC) on PADC (polyallyl diglycol carbonate) were investigated in this study. The chemical modifications were studied by Fourier Transform Infrared (FTIR) spectrometry and the corresponding nano-mechanical properties were also determined. The scission process could be revealed by the decreasing net absorbance at particular wavelengths in the infrared (IR) spectra. On the other hand, the cross-linking was indicated by the increased hardness and reduced modulus determined with a nanoindenter. UVA caused no chemical modifications as most of the UV photons in this range were not absorbed by PADC. Both UVA + B and UVC irradiation caused scission of the chemical bonds, which was also manifested by the faster chemical etching rates. The bulk etch rate increased from 1.37 to 5.73 μm/h for 60 h of UVA + B exposure for 3 h of chemical etching, and increased to 5.13 μm/h for 60 h of UVC exposure. For 3 h of etching, the bulk etch rate remained unchanged for UVC exposures longer than 20 h. The saturation of the bulk etch rate was due to formation of cross-linked structures on the surface of the PADC samples. It was also observed that a UVC exposure caused a comparatively higher bulk etch rate at the beginning of etching. However, the bulk etch rate decreased with the depth of the PADC sample due to the lower rate of oxygen diffusion into deeper regions.  相似文献   

5.
A full understanding on the relationships between weathering factors and deteriorations in the physical or mechanical properties of polymeric materials as well as their intercorrelations is critically important to forecast the durability of materials. In this work, the outdoor weathering behaviors of isotactic polypropylene (iPP) across a 1.5-year period under six typical climate scenarios in China are investigated. A wide sets of natural exposure conditions and test methods allow the establishment of the substantial correlations between chemical/physical structures and appearance/mechanical properties under simultaneous effects of multiple weathering factors (such as light, heat, oxygen etc.). The results under diverse natural environments suggest that the crystallinity and crack development depend largely on the molecular weight while the yellowing index correlates directly with the carbonyl index irrespective of the exposure conditions. The relationship between tensile strength and molecular weight is found to be in accord with an empirical linear model. Subsequently, using principal component analysis (PCA), a data reduction and visualization method, the degradation risk map of PP materials in China is established and the relative importance of relevant weathering factors is evaluated. Temperature is found to be the most dominant weathering factor on iPP aging under the climate scenarios investigated in the present work.  相似文献   

6.
分别采用纳米级金红石型TiO2和受阻胺光稳定剂(HALS)对ABS进行改性,通过熔融共混法制备了ABS/纳米TiO2、ABS/纳米TiO2/HALS和ABS/HALS复合材料,采用GB/T16422.2~1999所述的塑料实验室光源暴露实验方法,用氙灯气候试验机对其进行28天人工加速老化,通过测定其老化过程中的无缺口和缺口试样冲击强度的变化来对其抗老化性能进行表征,同时利用光学显微镜和扫描电镜对其老化过程中的冲击断口形貌变化进行了研究.结果表明,纳米TiO2在ABS基体中分散良好,改性后的复合材料均具有较好的抗老化性能,纳米TiO2与HALS复合改性ABS对其耐候性的提高具有明显的协同作用,其老化后的抗冲击性能超过了单一使用HALS或纳米TiO2的改性效果,老化28天后纯ABS树脂试样的无缺口冲击强度保持率只有20%左右,添加2.0 wt%纳米TiO2后,老化28天后的ABS/纳米TiO2/HALS复合材料试样的保持率则提高到47.9%,为纯ABS树脂试样的2.5倍.  相似文献   

7.
In previous work, the FT-IR maximum of absorption of a low molecular weight HALS containing a sebacate structure was reported to shift from 1738 to 1732 cm−1 during the photo-aging of polypropylene. Previous studies have shown that the reduced mobility of the molecule caused the absorption to shift towards lower frequencies while decreasing its stabilizing activity. This paper presents further results evidencing the loss of activity of the low molecular weight HALS and proposes a novel mechanistic interpretation for the observed spectral shift.  相似文献   

8.
The photoprotective effectiveness of various polymeric and nonpolymeric hindered amine light stabilizers (HALS) was determined by exposing samples of high-density polyethylene (HDPE) containing these additives to ultraviolet (UV) light and measuring the resultant oxygen uptake characteristics. Values of the initial quantum yield for oxygen uptake calculated for these formulations indicate that the higher molecular weight HALS compounds are less effective photostabilizers than the nonpolymeric HALS, and this is partly attributable to their decreased mobility in the polymer matrix. It was further found that the addition of an ultraviolet absorber (UVA) to a formulation containing a polymeric HALS compound enhances its photostability, although this phenomenon may be partly due to synergism between the UVA and the antioxidant, the latter having been added as part of the base stabilization. The antagonism which exists between certain sulfur-containing antioxidants and HALS compounds was also investigated and it was found that the lower molecular weight sulfur-containing antioxidants exhibit the greatest degree of antagonism. The results confirm that the mobility in the polymer matrix of the stabilizer system can serve as an explanation of its effectiveness. The article provides evidence that the technique of oxygen uptake monitoring is a sensitive and rapid method of assessment of polymer photostability in the presence of stabilizer systems.  相似文献   

9.

A polymeric hindered amine light stabilizer (HALS), wherein the hindered amine functionality was attached to the maleic anhydride graft ethylene‐propylene‐diene terpolymer (EPDM) was synthesized. This involves photoinduced grafting of maleic anhydride groups on unsaturated sites of EPDM, followed by incorporation of amino terminated HALS. The grafting and functionalization reactions were characterized by FTIR and 13C NMR spectroscopy. The surface changes upon degradation are studied by SEM. The photostabilizing efficiency of this polymeric HALS was studied and compared with conventional HALS under accelerated weathering conditions. The HALS grafted EPDM showed significantly improved photostabilizing efficiency.  相似文献   

10.
In this paper, combined moisture/ultraviolet (UV) weathering performance of unbleached and bleached Kraft wood fibre reinforced polypropylene (PP) composites was studied. Composites containing 40 wt% fibre with 3 wt% of a maleated polypropylene (MAPP) coupling agent were fabricated using extrusion followed by injection moulding. Composite mechanical properties were evaluated, before and after accelerated weathering for 1000 h, by tensile and impact testing. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were also carried out to assess the changes occurring during accelerated weathering. Bleached fibre composites initially showed higher tensile and impact strengths, as well as higher thermal stability and greater crystallinity. During accelerated weathering, both unbleached and bleached fibre composites reduced tensile strength (TS) and Young's modulus (YM), with the extent of the reduction found to be similar for both unbleached and bleached fibre composites. Evidence supported that the reduction of TS and YM was due to PP chain scission, degradation of lignin and reduced fibre-matrix interfacial bonding.  相似文献   

11.
This paper describes the chemical evolution of two propylene-ethylene copolymer formulations, non-stabilized and carbon black filled - HALS stabilized, exposed to a range of natural and artificially accelerated weathering techniques, commonly used in the field of material testing. With the non-stabilized formulation, a fairly good representation of weathering in outdoor conditions was demonstrated with any of the accelerated exposures through the recognition of similar chemical changes at the molecular level. In contrast, the additives in the stabilized matrix induced very different chemical evolutions depending on the weathering techniques employed. This variability has been used to critically characterize those techniques on a scientific basis.  相似文献   

12.
The ultraviolet absorbance of a urethane coating showed typical yellowing that increased with exposure period. An effective dosage was calculated from the solar spectrum, the quantum yield for the degradation process and the ultraviolet absorption. Assuming a constant quantum yield, there is a clear acceleration of the absorption of damaging radiation because the ultraviolet absorption increases with exposure. This non-linear relationship offers possibilities on how to estimate a service lifetime. In addition, the yellowing can be analyzed as an “Urbach” tail which is usually attributed to structural disorder that introduces energy levels between the ground and excited electronic states.  相似文献   

13.
The weathering of wood-plastic composites changes their appearance and/or mechanical properties. These changes can be slowed through the addition of ultraviolet absorbers and pigments. The first phase of this study examined the effect of incorporating different concentrations of an ultraviolet absorber and/or pigment into wood-flour-filled high-density polyethylene (WF/HDPE) composites. Lightness and flexural properties of the composites were determined periodically during exposure to UV radiation and water spray in a xenon-arc type weathering apparatus. The influence of exposure type (UV radiation, with or without water spray) on the properties of photostabilized WF/HDPE composites was determined in the second phase of the study. The results showed that both ultraviolet absorbers and pigments provide protection against weathering of wood-plastic composites. The amount of protection can be influenced by both photostabilzer concentration and exposure variables.  相似文献   

14.
Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.  相似文献   

15.
Characterization of oxidation products responsible for yellowing of paper through absorption and through emission is presented using independently UV-visible absorption spectrophotometry and microspectrofluorimetry to survey the thermal oxidation at 100 °C and the photo-oxidation at λ ≥ 340 nm and at 60 °C of the three types of paper containing low amount of ligneous residues (SA papers) or not (WH and C papers). It was shown that due to secondary oxidation yellowing of product is favoured in the dark. It was shown that pre-photo-oxidation largely increased the yellowing in the dark. The effect of pre-photo-oxidation on yellowing through absorption and on yellowing through emission was shown to be different.  相似文献   

16.
Accelerated aging and stabilization of radiation-vulcanized EPDM rubber   总被引:2,自引:0,他引:2  
The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD:TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.  相似文献   

17.
A novel method, allowing simultaneous UV exposure of a polymer sample and IR interrogation of the vapour in a specially constructed cell, has been applied to polyethylene (PE) samples containing TiO2 pigments with different photoactivities. Measurements of the CO2 generated by films exposed to ultraviolet irradiation (UV) were completed in 5 h - very much less than conventional accelerated tests. The TiO2 pigments used included anatase and rutiles with different surface treatments. Anatase pigmented material gave significantly higher CO2 emission than unpigmented PE whilst rutile-pigmented PEs either gave reduced CO2 emission or enhanced emission, according to the surface treatment. The ranking of the pigments as protectants or pro-degradants correlated well with the carbonyl index measured after more than 300 h exposure to UVA fluorescent tubes in a QUV machine.The method was then used to probe mechanistic aspects of the photo-oxidation of pigmented polyethylene (PE) film. For unpigmented polymer the photo-degradation was sensitive to changes in the small fraction of incident UV below 300 nm, but for pigmented films this was much less important. This is because unpigmented film degrades by direct photochemical attack whereas, for pigmented film, photocatalysis by TiO2, which absorbs in the 300-400 nm region, is important. For films whose photo-oxidation was dominated by photocatalysis by the TiO2 the rate of oxidation was shown to vary as the square root of the UV intensity. By contrast, for unpigmented films the rate of direct photochemical oxidation was linearly proportional to UV intensity. The difference is a consequence of the controlling role of electron-hole recombination in photocatalytic processes. For both unpigmented and pigmented films the rate of oxidation was shown to increase with increasing humidity and oxygen content of the atmosphere.  相似文献   

18.
Direct analysis of polymers containing polymeric hindered amine light stabilizers (HALS) by using pyrolysis coupled to GC-MS is applied successfully for fast and straightforward identification of these HALS additives. Each of the HALS additives shows different pyrolysis gas chromatograms containing characteristic pyrolysis products. As a result, HALS additives with very similar chemical structures, e.g. Chimassorb 944 and Chimassorb 2020, can be distinguished. A HPLC method with both ultraviolet (UV) and evaporative light scattering detection (ELSD) is developed to quantify the various HALS additives in extracts of polymers. The critical factor of the HPLC method is the use of a basic amine, like n-hexylamine, as a solvent additive to facilitate the elution of HALS additives. The various HALS additives can be distinguished according to retention time and peak shape and by using different detection methods. The suitability of the developed methods is demonstrated by the analytical performance of the HPLC method and the identification and determination of the actual content of HALS additives in polyolefines using pyrolysis GC-MS and HPLC. The HPLC method can also be used for the determination of the specific migration of HALS additives from food contact materials.  相似文献   

19.
The wavelength sensitivity of unpigmented 100 mil thick ABS exposed to sunlight and filtered xenon are radiation was determined by the sharp cut filter technique based on three types of photochemical changes: bleaching, yellowing and loss in impact strength. Bleaching of the yellow-colored species formed in the processed material is caused by wavelengths between 380 and 525 nm with maximum color change by the 475–485 nm region. Photochemical yellowing is due to wavelengths between 300 and 380 nm with all wavelengths being almost equally effective. The spectral sensitivity based on change in impact strength shifts from the UV to the visible region as photochemical yellowing progresses. Addition of two stabilizers, a benzotriazole ultraviolet absorber and a hindered amine stabilizer, shifts the wavelength sensitivity based on yellowing to wavelengths shorter than 330 nm, but has no influence on the spectral effects based on impact strength. It is postulated that the rate of yellowing is reduced mainly by the ultraviolet absorber and stabilization against loss in impact strength is due largely to the hindered amine. Differences in rates and spectral response of the three types of photochemical changes indicate that they are due to different initiating mechanisms and thus require different types of stabilization. The significance to stability testing is discussed.  相似文献   

20.
Polyaniline (PANI) base has been suspended in 9 M potassium hydroxide at 20 °C or 90 °C for various time intervals extending to 4 months. The fraction of acetone-soluble material increased from 1.2 wt.% to 4.5 wt.% after exposure to an alkaline medium for 60 days at 20 °C. Gel-permeation chromatography indicates that the aggregation of PANI is reduced, while the chain degradation itself is negligible. FTIR spectroscopy confirms this trend and the absence of hydrolytic changes in the PANI structure. Polyaniline retains the ability to be reprotonated with a 1 M sulfuric acid to a conducting form. No marked changes in the molecular structure have been found, even after suspension of PANI in 9 M KOH at 90 °C for 60 days.Similar immersion of PANI salt in 5 M sulfuric acid at 20 °C was responsible for changes in the protonation, and the mass increased by 11 wt.%. This was explained by the exchange of the original sulfate or chloride counter-ions for hydrogen sulfate anions or by the protonation of secondary amine sites in PANI in addition to imine ones. The changes in the molecular structure are discussed on the basis of FTIR spectra. The conductivity decreased from 1.2 S cm−1 to ∼10−3 S cm−1 but no time-dependence of conductivity was observed. There was no fraction of PANI soluble in acetone. PANI in the protonated state is thus stable also in the strongly acidic medium.The study is supplemented by the assessment of the thermal stability of PANI base, which is of importance for the processing of PANI. Loss of moisture has been observed after exposure to 250 °C for 10 h in both nitrogen atmosphere and in air. Good stability was found at 350 °C only in the nitrogen atmosphere, while a marked mass loss in weight was registered in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号