首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

2.
Short cellulose nanofibrils (SCNF) were investigated as reinforcement for polyvinyl alcohol (PVA) fibers. SCNF were mechanically isolated from hard wood pulp after enzymatic pretreatment. Various levels of SCNF were added to an aqueous PVA solution, which was gel-spun into continuous fibers. The molecular orientation of PVA was affected by a combination of wet drawing during gel spinning and post-hot-drawing at a high temperature after drying. A maximum total draw ratio of 27 was achieved with various SCNF contents investigated. The PVA crystal orientation increased when small amounts of SCNF were added, but decreased again as the SCNF content was increased above about 2 or 3 %, likely due to SCNF percolation resulting in network formation that inhibited alignment. SCNF fillers were effective in improving PVA fiber tensile properties (i.e., ultimate strength and elastic modulus). For example, the ultimate strength and modulus of PVA/SCNF composite fiber with a SCNF weight ratio of 6 were nearly 60 and 220 % higher than that of neat PVA. Shifts in the Raman peak at ~1,095 cm?1, which were associated with the C–O–C glycosidic bond of SCNF, indicated good stress-transfer between the SCNF and the PVA matrix due to strong interfacial hydrogen bonding. Cryogenic fractured scanning electron microscopy images of filled and unfilled PVA fibers showed uniform SCNF dispersion.  相似文献   

3.
Foamed poly(vinyl alcohol) (PVA) cryogels are studied. Such heterogeneous gel composites are formed as a result of the cryogenic treatment (freezing—storage in a frozen state—thawing) of water— PVA liquid foams in the absence and presence of surfactants. It is shown that the addition of ionic and nonionic surfactants to an aqueous PVA solution and its subsequent foaming result in the formation of liquid foam whose stability is lower than that of the foam prepared from an aqueous PVA solution in the absence of surfactant, i.e., surfactants cause a destabilizing effect on the foams containing PVA. Gas-filled PVA cryogels formed as a result of freezing—thawing of such foams contain large (up to ~180 μm) pores (air bubbles incorporated into the matrix of heterogeneous gel). Mechanical and thermal properties of cryogels depend on the nature and concentration of surfactants, as well as on the regime of cryogenic treatment. The rigidity of foamed PVA cryogels prepared in the presence of sodium dodecyl sulfate and cetyltrimethylammonium bromide ionic surfactants is lower and that in the presence of nonionic decaoxyethylene cetyl ether is higher than for equiconcentrated (by the polymer) foamed PVA cryogel containing no surfactant. Microscopic studies and the analysis of obtained images of cryogel structure demonstrate that the effect of surfactant on the morphology of freezing foam can be different, depending on the type of surfactant added to the initial system. This leads to foam-destabilizing effects such as the collapse, deformation, and coalescence of air bubbles; the failure of gel phase structure near the bubble surface; etc. However, the complete disintegration of the foamed structure is prevented by a very high viscosity of the unfrozen liquid microphase of a macroscopically solid sample and by the cryotropic PVA gelation that fixes the structure of partially destroyed foam.  相似文献   

4.
Although the positive effect that cellulose nanofibers (CNF) can have on paper strength is known, their effect on flocculation during papermaking is not well understood, and most relevant studies have been carried out in presence of only cationic starch. Flocculation is the key to ensuring retention of fibers, fines, and fillers, and furthermore floc properties have a great influence on paper quality. The aim of this research is to study the interactions between CNF and flocculants by assessing the effect of two types of CNF, from eucalyptus and corn, on the flocculation process induced by three different retention systems [a dual system, polyvinylamine (PVA), and cationic starch as reference]. The results showed that CNF interacted with the flocculants in different ways, affecting flocculation efficiency and floc properties. In general, addition of CNF increased floc stability and minimized overdosing effects. Moreover, presence of CNF increased floc size for given PVA dose; therefore, CNF addition could contribute to improve the wet end in the paper machine if combined with the optimal flocculant and dose.  相似文献   

5.
Procyanidins are contained in various foods, and their effects on starch hydrolysis have been reported. In Japan, black soybeans, which contain a trimeric procyanidin, procyanidin C1 (proC1), are cooked with rice and used to prepare dumplings. In this study, the effects of proC1 on the pancreatin-induced formation of reducing sugars and starch hydrolysis were studied using potato starch and corn starch. ProC1 inhibited both reactions; the inhibition was greater in potato starch than corn starch when added to heated potato starch and corn starch. When heated with proC1, its inhibitory effects decreased, especially in potato starch, suggesting the important role of proC1 itself for the inhibition of potato starch hydrolysis. ProC1 also inhibited the hydrolysis when added to heated, longer amylose (average molecular weight: 31,200), and the inhibition decreased when heated with the amylose. On the other hand, proC1 could not inhibit the hydrolysis when added to heated, shorter amylose (average molecular weight: 4500), but could when heated with the amylose, suggesting the important role of the degradation products of proC1 for the inhibition. We discuss the mechanism of the proC1-dependent inhibition of amylose hydrolysis, taking the molecular weight into account.  相似文献   

6.
Poly(vinyl alcohol) (PVA)/attapulgite (AT) nanocomposite fibers have been prepared by wet spinning. The morphology and mechanical properties of the modified PVA fibers have been characterized with transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), birefringence measurements, and mechanical testing. The PVA/AT nanocomposite fibers show much higher tensile strength, initial modulus, and work to break than pure PVA fibers with the same draw ratio. SEM observations demonstrate that the AT nanorods can align orderly along the fiber axis by stretching and have good adhesion to the fiber matrix. The results of birefringence measurements prove that the modified fibers have higher orientation than pure PVA fibers after stretching. The results of DSC analysis indicate that the crystallinity of the PVA fibers can be increased by the addition of AT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1995–2000, 2006  相似文献   

7.
Two plant proteins, soyprotein and wheat gluten, and chicken feathers used to size cotton substrates provided sizing performance similar to starch and were also easily degraded in activated sludge. Sizing is an essential process to impart protection to warp yarns and increase weaving efficiency. Cotton yarns have traditionally been sized with starch, modified starch derivatives, CMC, poly vinyl alcohol (PVA), or a combination thereof along with quite a few other fiber binding ingredients. Although starch and starch derivatives are extensively used for sizing, there can be several limitations including less-than-satisfactory sizing performance and difficulties in desizing starch based size. Plant proteins such as wheat gluten, soyproteins and poultry feathers are available in large quantities at low cost and have limited industrial applications. However, these proteins are known to have excellent film-forming properties, a primary requirement for a warp size, and have also been used as adhesives. Using proteins as warp sizing agents on cotton yarns potentially could provide acceptable sizing performance and be cost-effective, as well. In this research, soyproteins, wheat gluten, and chicken feathers were studied for exploring their feasibility for sizing, desizing, biodegradability, and ability to replace starch and PVA for sizing cotton yarns. It was found that all three proteins provided similar cohesion to fibers and abrasion resistance compared to starch. Protein sizes had significantly high BOD5/COD ratio compared to PVA, suggesting that the proteins are easily degradable in textile effluent treatment plants.  相似文献   

8.
刘海清 《高分子科学》2010,28(5):781-788
<正>The stability ofpoly(vinyl alcohol)(PVA) nanofibrous mats in water media was improved by post-electrospinning treatments.Bifunctional glutaraldehyde(GA) in methanol was used as a crosslinking agent to stabilize PVA nanofiber,but fiber twinning was observed frequently,and the highly porous structure of PVA nanofibrous mats was destroyed when the crosslinked fiber was soaked in water.To overcome this shortcoming,chitosan(CS) was introduced into the PVA spinning solution to prepare PVA/CS composite nanofibers.Their treatment in GA/methanol solution could retain the fiber morphology of PVA/CS nanofibers and porous structure of PVA/CS nanofibrous mats even if they were soaked in aqueous solutions for 1 month.Scanning electron microscopy(SEM),X-ray diffraction(XRD),thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC) were applied to characterize the physicochemical structure and thermal properties of PVA nanofibers.It was found that the water resistance of PVA nanofibrous mats was enhanced because of the improvement of the degree of crosslinking and crystallinity in the electrospun PVA fibers after soaking in GA/methanol solution.  相似文献   

9.
Submicron poly(vinyl alcohol) (PVA) fiber mats were prepared by electrospinning of aqueous PVA solutions in 6-8% concentration. Fiber morphology was observed under a scanning electron microscope and effects of instrument parameters including electric voltage, tip-target distance, flow rate and solution parameters such as concentration on the morphology of electrospun PVA fibers were evaluated. Results showed that, when PVA with higher degree of hydrolysis (DH) of 98% was used, tip-target distance exhibited no significant effect on the fiber morphology, however the morphological structure can be slightly changed by changing the solution flow rate. At high voltages above 10 kV, electrospun PVA fibers exhibited a broad diameter distribution. With increasing solution concentration, the morphology was changed from beaded fiber to uniform fiber and the average fiber diameter could be increased from 87 ± 14 nm to 246 ± 50 nm. It was also found that additions of sodium chloride and ethanol had significant effects on the fiber diameter and the morphology of electrospun PVA fibers because of the different solution conductivity, surface tension and viscosity. When the DH value of PVA was increased from 80% to 99%, the morphology electrospun PVA fibers was changed from ribbon-like fibers to uniform fibers and then to beaded fibers. The addition of aspirin and bovine serum albumin also resulted in the appearance of beads.  相似文献   

10.
Ongoing research cooperation between USDA and the University of Pisa, Italy has yielded several composite blends of poly(vinyl alcohol) (PVA) and corn fibers (CF). The USA is the largest producer of ethanol from cereal grains. Composites based on natural fibers alone are extremely sensitive to water. Their mechanical properties deteriorated upon the absorption of water, thus suggesting a limited usefulness of such formulations in practical applications. In this study, corn-fibers produced during the wet milling process of corn for fuel ethanol were used to prepare composites. CF and PVA were processed in variable amounts in the presence of both dry/fluid plasticizers, such as glycerol and pentaerythritol. Composites prepared from CF in combination with PVA showed little change in their mechanical properties even after conditioning at variable relative humidities, as well as complete soaking in water. Composites tested after storage for one year under 50% relative humidity and 23°C exhibited mechanical properties similar to those of freshly prepared composites. Cornstarch was introduced in the formulation for the purpose of reducing the cost of the final product and to further increase the composition of natural components in the composites. Addition of starch moderately reduced the mechanical properties of the composites.  相似文献   

11.
Dietary fiber can be obtained by dextrinization, which occurs while heating starch in the presence of acids. During dextrinization, depolymerization, transglycosylation, and repolymerization occur, leading to structural changes responsible for increasing resistance to starch enzymatic digestion. The conventional dextrinization time can be decreased by using microwave-assisted heating. The main objective of this study was to obtain dietary fiber from acidified potato starch using continuous and discontinuous microwave-assisted heating and to investigate the structure and physicochemical properties of the resulting dextrins. Dextrins were characterized by water solubility, dextrose equivalent, and color parameters (L* a* b*). Total dietary fiber content was measured according to the AOAC 2009.01 method. Structural and morphological changes were determined by means of SEM, XRD, DSC, and GC-MS analyses. Microwave-assisted dextrinization of potato starch led to light yellow to brownish products with increased solubility in water and diminished crystallinity and gelatinization enthalpy. Dextrinization products contained glycosidic linkages and branched residues not present in native starch, indicative of its conversion into dietary fiber. Thus, microwave-assisted heating can induce structural changes in potato starch, originating products with a high level of dietary fiber content.  相似文献   

12.
An alternative for improving the degradability of polyolefins and polystyrene is the addition of pro-oxidant substances to their formulations. The materials obtained are then called oxo-biodegradable. This work aimed to assess the biotic and abiotic degradation of atactic polystyrene (PS), utilising as test material foamed PS plates used in the manufacture of trays, formulated with Co- and Mn-based pro-oxidant additives. The plates were exposed to artificial weathering (ultraviolet radiation and heat) and were periodically analysed for changes in structural properties. The oxidised surface residues detached from the samples were incubated in a stabilised compost of urban waste (58 °C) or in an aqueous mineral medium (25 °C), the latter being inoculated with urban waste compost and also with a microbial consortium. It was found that the molar masses of the eroded materials from the pro-oxidant activated samples were significantly lower than the initial sample molar masses, with simultaneous incorporation of oxygen into the chains during the accelerated weathering. These samples underwent biodegradation and gave mineralisation values of 2-5% over 2-3 months of incubation in compost and perlite or in mineral aqueous medium. Biodegradation of the residues from the samples not containing pro-oxidant additives was also observed, but at levels which were lower than those obtained for oxo-biodegradable samples.  相似文献   

13.
The main shortcomings of biodegradable starch/poly(vinyl alcohol) (PVA) film are hydrophilicity and poor mechanical properties. With an aim to overcome these disadvantages, cornstarch was methylated and blend films were prepared by mixing methylated-cornstarch (MCS) with PVA. The mechanical properties, water resistance and biodegradability of the MCS/PVA film were investigated. It was found that MCS/PVA film had higher water resistance than the native starch/PVA film. However, the water resistance of MCS/PVA films did not have significant difference with the increase in the degree of substitution (DS) of the methylated starch from 0.096 to 0.864. Enzymatic, microbiological and soil burial biodegradation results indicated that the biodegradability of the MCS/PVA film strongly depended on the starch proportion in the film matrix. The degradation rate of starch in the starch/PVA film was hindered by blending starch with PVA. Both tensile strength and percent elongation at break of the MCS/PVA film were improved as DS of the methylated starch increased. Conversely, increasing the methylated starch proportion in film matrix deteriorated both tensile strength and percent elongation at break of the film.  相似文献   

14.
马铃薯淀粉磷酸酯的物理化学特性   总被引:3,自引:0,他引:3  
通过与玉米淀粉和马铃薯淀粉相比较,研究了马铃薯淀粉磷酸酯(PEPS)的理化特性,包括粘度的测定,热糊与冷糊的稳定性,不同pH值及电解质(NaCl)和非电解质(蔗糖)存在下的粘度曲线,凝胶强度及冻融稳定性,结果表明,马铃薯淀粉磷酸酯比玉米淀粉和马铃薯淀粉具有更优良的热糊与冷糊的稳定性,电解质(NaCl)和非电解质(蔗糖)的存在,对其热糊与冷糊的稳定性基本元影响,凝胶强度高,冻融稳定性好,尤其是耐酸性能强。  相似文献   

15.
The preparation of thermo-crosslinking hydrogel fibers composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) was presented. The hydrogel fiber was prepared by extruding the spinning dope from in situ polymerization of acrylic acid in the presence of PVA into coagulating bath of saturated ammonium sulfate aqueous solution. The network was formed by thermally heating the dried fibers under vacuum. The final hydrogel fibers exhibit pH-sensitive behavior and show hysteresis loop in the pH range from 2.5 to 12.5. The pH value at which the swelling ratio of the fiber had a jump shifted to lower value with increasing the PAA content within the network. Increasing the heating temperature and time for the fibers, the swelling ratio decreased and the jump point pH shifted to higher pH value. The oscillatory swelling/contracting behavior of the hydrogel fiber exhibited a well reversible pH-responsive property.  相似文献   

16.
The effect of polylactic acid (PLA), cellulose microfibers (CEL), and calcium carbonate (CaCO3) on the equilibrium moisture content (EMC), density and flexural mechanical properties of starch-based bio-foams was studied using a full factorial design 23. Also, a moisture aging study was carried out. The results show the three factors studied changed the bio-foams morphology, contribute to density increment, enhance dimensional stability and improve both the moisture resistance and the mechanical flexural properties. The moisture aging studies show that, although the flexural mechanical properties decrease with increasing humidity, the bio-foams exceed the mechanical properties of commercial expanded polystyrene (EPS) trays. These findings suggest the bio-composites could be used in regions where the humidity conditions are moderate to very humid, guaranteeing their dimensional stability and functional properties. Thus, these new bio-foams are an attractive and sustainable option to replace the non-biodegradable EPS commercial trays.  相似文献   

17.
In the present study, biocomposite films of starch/poly(vinyl alcohol) (St/PVA) reinforced with delignified Grewia optiva fiber and methyl methacrylate (MMA) grafted fibers were prepared using citric acid as a plasticizer and glutaraldehyde as the cross-linker. The biocomposite films were subjected to evaluation of mechanical properties, biodegradability, and antibacterial properties. The biocomposite films were characterized by using Fourier transform-infrared (FT-IR) spectrophotometry, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA/DTA/DTG). SEM showed good adhesion between St/PVA blend matrix and fibers. The antimicrobial activity of biocomposite films against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli was also explored. The results confirmed that the biocomposite films may be used for food packaging.  相似文献   

18.
Kinetic regularities of flocculation of model kaolin suspensions by highly substituted cationic flocculants synthesized from different starches (corn, waxy corn, potato, and tapioca starches) have been studied as depending on the doses and vegetable origins of the flocculants. The rate of kaolin suspension flocculation has been found to increase with the dose of the cationic starches of all types. It has been shown that, irrespective of the dose, the highest rate of kaolin sedimentation in the model systems is observed in the presence of cationic potato starch. It has been demonstrated that cationic potato starch flocculates kaolin suspensions with concentrations of 0.1, 0.5, and 1.0% with the same efficiency. In this case, the suspensions are almost completely clarified within 2–5 min. Moreover, the dependence of the flocculating efficiency for a 0.1% model suspension on the dose of cationic starch has been found to pass through a maximum at a starch content of 1.0–5.0 mg/g of kaolin depending on the type of starch.  相似文献   

19.
A research cooperation between USDA and the University of Pisa led to the development of several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers. The cast films were prepared by blending orange fibers (OR-fibers) and PVA with and without cornstarch to yield flexible and cohesive films. To improve properties, films were also prepared by crosslinking PVA, starch and OR-fibers with hexamethoxymethylmelamine (HMMM). Films were evaluated for their thermal stability, water permeability and biodegradation. Thermal gravimetric analyses indicated the potential usefulness of such blends in several thermoplastic applications. Films were permeable to water, and retained the moisture content in the soil while retaining their integrity. Films generally biodegraded within 30 days in compost, achieving between 50-80% mineralization. Both neat PVA and blends that had been crosslinked showed comparatively slow degradation. A possible stimulating effect of lingocellulosic fillers on the biodegradation of PVA in blends has been observed.  相似文献   

20.

Starch is one of the main carbohydrates in food; it is formed by two polysaccharides: amylose and amylopectin. The granule size of starch varies with different botanical origins and ranges from less than 1 μm to more than 100 μm. Some physicochemical and functional properties vary with the size of the granule, which makes it of great interest to find an efficient and accurate size-based separation method. In this study, the full-feed depletion mode of split-flow thin cell fractionation (FFD-SF) was employed for a size-based fractionation of two types of starch granules (corn and potato) on a large scale. The fractionation efficiency (FE) of fraction-a for corn and potato granules was 98.4 and 99.4%, respectively. The FFD-SF fractions were analyzed using optical microscopy (OM) and gravitational field-flow fractionation (GrFFF). The respective size distribution results were in close agreement for the corn starch fractions, while they were slightly different for the potato starch fractions. The thermal properties of FFD-SF fractions were analyzed, and the results for the potato starch showed that the peak temperature of gelatinization (Tp) slightly decreases as the size of the granules increases. Additionally, the enthalpy of gelatinization (ΔH) increases when the granule size increases and shows negative correlation with the gelatinization range (ΔT).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号