首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
尿素/乙醇胺复配增塑聚乙烯醇性能的研究   总被引:1,自引:0,他引:1  
采用尿素/乙醇胺为复合增塑剂,利用流延法制备了增塑改性的PVA膜.通过FTIR法研究了尿素/乙醇胺复合体系与PVA的相互作用,采用XRD、DSC考察了增塑改性PVA膜的结晶性能和热性能.研究结果表明,乙醇胺作为尿素的良溶剂,能有效抑制尿素从PVA基体中析出.由尿素、乙醇胺组成的复合增塑剂能破坏PVA分子中的氢键作用、降低PVA的结晶度和熔点,对PVA的增塑作用显著.增塑改性后的PVA膜在水中的溶胀率(DS)下降,溶失率(S)增加.力学性能测试表明增塑改性后的PVA膜拉伸强度(TS)降低,断裂伸长率(E%)提高.含30phr尿素/乙醇胺的PVA膜的拉伸强度、断裂伸长率分别为23.89MPa和542.88%.  相似文献   

2.
以六水合硝酸镁[Mg(NO3)2·6H2O]为增塑剂, 采用流延法制备了增塑改性的淀粉-聚乙烯醇(PVA)复合膜, 并研究了改性后淀粉-PVA复合膜的性能. 研究结果表明, Mg(NO3)2·6H2O与淀粉和PVA发生一定的相互作用, 破坏了淀粉和PVA中的结晶结构. 因此, Mg(NO3)2·6H2O的加入可提高淀粉与PVA间的相容性, 改变了淀粉-PVA复合膜的力学性能, 使其拉伸强度下降, 断裂伸长率提高.  相似文献   

3.
海藻酸钠/羧甲基淀粉共混膜   总被引:6,自引:0,他引:6  
用溶液共混法成功制备出海藻酸钠/羧甲基淀粉共混膜,IR、XRD、SEM结构表征以及力学性能、吸水性和水蒸汽透过率测定结果表明:共混膜中海藻酸钠和羧甲基淀粉间存在强烈的分子间氢键等相互作用及良好的相容性;随羧甲基淀粉含量的增加,共混膜的吸水率显著降低;当羧甲基淀粉含量(wCMS)=0.20时,共混膜的抗张强度和断裂伸长率分别为53.1MPa和5.3%,比海藻酸钠膜分别提高了97.4%和60.6%,水蒸汽透过率达最小值,是一种具有潜在应用前景的可食性包装膜材料。  相似文献   

4.
Poly(lactic acid) (PLA) composites consisting of PLA, rice starch (RS) (0–50 wt%) and epoxidised natural rubber (ENR50) were compounded by a twin-screw extruder and compression moulded into dumbbell specimens. Tensile tests were performed to characterize the mechanical properties of the PLA/RS composites. Morphological studies were done on the tensile fractured surface of the specimens by using scanning electron microscopy (SEM). Twenty weight percent of RS achieved a good balance of strength and stiffness. Beyond 20 wt% loading of RS, the tensile strength and elongation at break of PLA decreased drastically. This may be attributed to the agglomeration of RS, which could then act as stress concentrator. The incorporation of ENR50 increased the tensile strength and elongation at break of the PLA/RS composites remarkably, owing to the elastomeric behaviour and compatibilisation effects of ENR50. Interestingly, the morphology of PLA/RS composites transformed to a more ductile one with the addition of ENR. The kinetics of water absorption of the PLA/RS composites conforms to Fick's law. The Mm and D values are dependent on the RS and ENR concentrations. The tensile properties of the PLA/RS composites deteriorated after water absorption. The retention-ability and recoverability of the PLA/RS composites are relatively low, attributed to the hydrolysis of PLA, degradation of the PLA–RS interface and leaching of the RS particles. In addition, the tensile properties of PLA/RS composites decreased drastically upon exposure to enzymatic degradation. Extensive pinhole and surface erosion on the PLA/RS composites indicate high degree of hydrolysis. Whilst the addition of ENR leads to some improvements in tensile properties, nevertheless, it enhanced the biodegradability of the PLA/RS composites when exposed to water and -amylase enzymatic treatments.  相似文献   

5.
电纺聚乙烯醇超细纤维膜的性能研究   总被引:3,自引:0,他引:3  
由电纺制备聚乙烯醇(PVA)超细纤维膜,以扫描电镜观察纤维的微观形貌,用X射线衍射研究超细纤维膜的结晶行为,并测定了PVA超细纤维膜的力学性能和吸水性.结果表明,PVA超细纤维的平均直径为(184±26)nm,超细纤维中PVA的结晶度和晶体有序程度较浇铸膜低.超细纤维膜的拉伸强度、模量和断裂伸长率均较浇铸膜差,吸水率在300%以上,高于浇铸膜.  相似文献   

6.
Nanocomposites of bacterial cellulose (BC) and poly(vinyl alcohol) (PVA) were prepared by cast-drying method as an easy way in producing nanocomposite films and to expand the use of BC. The contribution of PVA in nanocomposites was evaluated by measurement of cross-sectional surface, moisture uptake and mechanical properties. Morphological analysis shows that PVA covered a number of cellulosic fibres and formed denser material as a function of PVA addition. Based on the tensile test, the addition of PVA causes a very slight reduction compared with bacterial cellulose itself. The BC/PVA nanocomposites still have similar stiffness to BC with elongation at break less than 5%, while PVA film shows ductile properties with elongation at break more than 80%. On the other hand, the presence of BC fibres in the PVA matrix enhanced the tensile strength and the elastic modulus of pure PVA about two to three times, but it decreased the toughness of pure PVA. The highest tensile strength and elastic modulus of the nanocomposites are 164 MPa and 7.4 GPa, respectively at BC concentration of 64%. Increasing BC concentration is proportional to reducing moisture uptake of BC/PVA nanocomposites indicating that the existence of BC fibres inhibits moisture absorption.  相似文献   

7.
氯化镁增塑改性聚乙烯醇   总被引:3,自引:0,他引:3  
以氯化镁为增塑剂, 采用流延法制备了增塑改性聚乙烯醇(PVA). 研究了氯化镁与PVA的相互作用以及氯化镁增塑改性PVA的结晶性能、 热性能和机械性能. 研究结果表明, 氯化镁能与PVA大分子发生较强的相互作用, 从而破坏PVA分子链内和链间的氢键, 降低PVA的结晶度. 氯化镁对PVA的热性能影响显著, PVA在加入氯化镁后的热分解过程由纯PVA的两段失重过程转变成三段失重过程. 氯化镁可有效增塑PVA, 其玻璃化转变温度降低, 拉伸强度下降, 断裂伸长率上升, 储能模量下降.  相似文献   

8.
In this study, a bio-based composite prepared from cross-linked polyvinyl alcohol/starch/cellulose nanofibril (CNF) was developed for film packaging applications. For this purpose, CNF, as reinforcing phase, was initially isolated from aspen wood sawdust (AWS) using chemo-mechanical treatments, and during these treatments, hydrolysis conditions were optimized by experimental design. Morphological and chemical characterizations of AWS fibers were studied by transmission electron microscopy, scanning electron microscopy, Kappa number, and attenuated total reflectance-Fourier transform infrared spectroscopy, as well as National Renewable Energy Laboratory and ASTM procedures. Morphological images showed that the diameter of the AWS fibers was dramatically decreased during the chemo-mechanical treatments, proving the successful isolation of CNF. Moreover, chemical composition results indicated the successful isolation of cellulose, and Kappa number analysis demonstrated a dramatic reduction in lignin content. Mechanical, morphological, biodegradability, and barrier properties of biocomposites were also investigated to find out the influence of CNF on the prepared biocomposite properties. The mechanical results obtained from tensile analysis revealed that Young’s modulus and ultimate tensile strength of biocomposite films were enhanced with increasing CNF concentration, while a significant decrease was observed in elongation at break at the same concentration of CNF. Furthermore, with adding CNF, barrier properties and resistance to biodegradability were increased in films, whereas film transparency gradually declined.  相似文献   

9.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   

10.
This article deals with the characterization of blend films obtained by mixing poly(vinyl alcohol) (PVA) and konjac glucomannan (KGM) in aqueous solution. The DTA curves of PVA/KGM blend films showed overlapping of the main thermal transitions characteristic of the individual polymers. The exothermic peak at 312°C, which resulted from the thermal degradation of the KGM, shifted slightly to a higher temperature at low PVA content (≤20 wt%). The weight-retention properties of the blend films indicated that thermal stability of the blend films were better than pure KGM film at PVA content below 20 wt%. The crystallinities, tensile strength, and elongation at break of the films increased with the PVA content, and reached the maximum values at 20 wt% PVA, then decreased. Changes in the carbonyl stretching band of KGM and hydroxyl stretching regions of KGM and PVA were detected by FTIR analysis. Those are attributable to the existence of a certain degree of inteaction between KGM and PVA, and resulted from intermolecular hydrogen bonds. Phase separation phenomena were observed by examining the surface of the blend films by SEM.  相似文献   

11.
海藻酸钠-硫酸软骨素共混膜的结构及性能研究   总被引:1,自引:0,他引:1  
利用溶液共混法成功制备了新型生物膜材料-硫酸软骨素共混膜,通过红外光谱、X-射线衍射、原子吸收光谱和扫描电镜对共混膜的结构进行了表征,并测定了不同配比共混膜的抗张强度、断裂伸长率,吸水率,同时考察了介质pH值和离子强度对共混膜吸水率的影响。结果表明:共混膜中海藻酸钠、软骨素之间具有较强的相互作用和良好的相容性,共混膜具有良好的力学性能。作为一种潜在的生物材料可望在生物医学领域得到应用。  相似文献   

12.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   

13.
采用氯化镁和聚乙二醇对聚乙烯醇(PVA)进行增塑改性, 并利用熔融加工方法制备了PVA薄膜.采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、差示扫描量热分析(DSC)和热重分析(TGA)方法研究了由氯化镁和聚乙二醇组成的复配增塑剂与PVA的相互作用及复配增塑剂对PVA结晶性能、热性能和力学性能的影响.结果表明, 由氯化镁和聚乙二醇组成的复配增塑剂能有效地破坏PVA自身的氢键, 降低PVA的结晶度和熔融温度, 提高PVA的热稳定性并扩展PVA的热塑加工温度窗口.由复配增塑剂通过热塑加工方法制得的PVA薄膜具有较好的力学性能, 拉伸强度为31 MPa, 断裂伸长率为466%.  相似文献   

14.
In recent years, numerous studies have focused on biodegradable plastics for agricultural applications. To improve the mechanical and hydrophobic properties, biodegradable xylan composite films containing poly(vinyl alcohol) (PVA) were successfully prepared by casting method in this work. A series of composite films at a PVA/xylan weight ratio of 3:1 under the addition of glycerol and urea were investigated. Influences of the urea and glycerol amounts on the functional properties of composite films such as hydrophilicity/hydrophobicity, water vapor permeability (WVP), mechanical properties, solubility and degradability were comparatively investigated. Results showed that increasing the glycerol amount led to a decrease in tensile strength and an increase in elongation at break and WVP, while the addition of 1 % urea in composite films without glycerol had a positive impact on improving the water resistance of composite films; the contact angle and WVP values reached 114.68° and 4.11 × 10?11 g m?1 s?1 Pa?1. Moreover, thermogravimetric analysis, FTIR and a scanning electron microscope were used to confirm the compatibility of the PVA and xylan components. FTIR analysis displayed the intensity of hydroxyl groups of films became stronger with increasing amounts of glycerol, while the opposite results were obtained with an increase of the amount of urea. These indicated that glycerol could improve the miscibility between PVA and xylan, and the addition of urea could enhance the water resistance of composite films.  相似文献   

15.
Cast film composites have been prepared from aqueous polymer solutions containing nanometric silica particles. The polymers were polyvinyl alcohol (PVA), hydroxypropylmethylcellulose (HPMC) and a blend of PVA‐HPMC polymers. In the aqueous dispersions, the polymer–silica interactions were studied through adsorption isotherms. These experiments indicated that HPMC has a high affinity for silica surfaces, and can adsorb at high coverage; conversely, low affinity and low coverage were found in the case of PVA. In the films, the organization of silica particles was investigated through transmission electron microscopy (TEM) and small‐angle neutron scattering (SANS). Both methods showed that the silica particles were well‐dispersed in the HPMC films and aggregated in the PVA films. The mechanical properties of the composite films were evaluated using tensile strength measurements. Both polymers were solid materials, with a high‐elastic modulus (65 MPa for HPMC and 291 for PVA) and a low‐maximum elongation at break (0.15 mm for HPMC and 4.12 mm for PVA). In HPMC films, the presence of silica particles led to an increase in the modulus and a decrease in the stress at break. In PVA films, the modulus decreased but the stress at break increased upon adding silica. Accordingly, the polymer/silica interaction can be used to tune the mechanical properties of such composite films. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1134–1146, 2006  相似文献   

16.
Development of modified plastics has been studied through the LDPE-acylated starch blend films to examine the effect of different acyl groups and degrees of substitution(DS) on properties of films.Corn starch was modified with acetyl and butyryl groups and films were prepared by blending acylated starch with low density polyethylene(LDPE).Systematic studies were done to observe the effect of acyl groups,DS and starch concentration on the properties and biodegradability of the blend films.It was observed that blend films containing 5% acetylated and butyrylated starches of high DS(2.5,1.7) maintained 75% and 83% of tensile strength of LDPE films.Thermal analysis results indicated that acetylated and butyrylated starch blend films decomposed at 370 °C and 389 °C which were higher than the decomposition temperature of native starch film(349 °C).Scanning electron micrographs of blend films containing high DS acylated starch showed well dispersed starch particles due to improvement in dispersion between starch and LDPE.Water absorption capacity of high DS acetylated and butyrylated starch blend films(4.18% and 3.76%,respectively) was lower than that of native starch films(5%).This study has an advantage because of blown films prepared can be integrated with the present manufacturing systems without any other requirement.  相似文献   

17.
Chitin/graphene oxide (GO) composite films with excellent mechanical properties were prepared in NaOH/urea solution using a freezing/thawing method. The structure, thermal stability and mechanical properties of the composite films were investigated. Use of an atomic force microscope and transmission electron microscopy indicated that GO was successfully exfoliated to a single layer by ultrasonication. The results revealed that GO nanosheets were homogeneously dispersed and embedded in the chitin matrix. Due to the strong interactions between GO and the chitin matrix, the tensile strength and elongation at break of the composite film possessing 1.64 wt% GO were significantly improved by 98.7 and 114.5 %, respectively, compared with pure chitin film.  相似文献   

18.
Single-use packaging materials made of expanded polystyrene (EPS) have been identified as suitable items to be replaced by biodegradable materials. Plates made with EPS represent a source of non-degradable waste that is difficult to collect and to recycle. Potato starch based foamed plates have been prepared by a baking process. Presently, foam plates have been prepared by baking aqueous mixtures of potato starch, corn fibers, and poly(vinyl alcohol) (PVA) inside a hot mold. The effects of the addition of corn fibers, a co-product of bio-ethanol production, on mechanical properties and moisture resistance of potato starch based foamed plates were investigated. The addition of corn fiber to potato starch batter increased baking time and an increased batter volume is needed to form a complete tray. The mechanical properties of the trays decreased with added corn fiber. In previous studies PVA has been added as aqueous solution to improve strength, flexibility, and water resistance of baked starch trays. In this study, 88% hydrolyzed PVA was added as a powder in the mixture, avoiding the time consuming and costly step of pre-dissolving the PVA. The addition of PVA to potato starch batters containing corn fiber mitigated the reduction in tensile properties seen in trays with added corn fiber. Starch-based trays produced with a high fiber ratio and PVA, showed improved water resistance.  相似文献   

19.
Wheat starch was reacted with poly(vinyl acetate) and with poly(vinyl acetate-co-butyl acrylate) in an internal mixer at 150 °C in the absence of catalyst, and in the presence of sodium carbonate, zinc-acetate and titanium(IV) butoxide. The resulted blends were pressed into film and characterized by 1H NMR-13C NMR spectroscopy, differential scanning calorimetry (DSC), mechanical testing, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), and water absorption. Partial trans-esterification took place between wheat starch and the polymers. The blends appeared as homogenous, translucent films with one glass transition temperature range, between that of starch and of the polymer. The presence of wheat starch in the blends improved the mechanical strength of the polymers, although elongation at break severely decreased, which is disadvantageous for processability. Zinc-acetate improved the tensile strength of the blends of starch with PVAC, while all catalysts resulted in an increase in strength of the blends of starch with poly(vinyl acetate-co-butyl acrylate) compared to the strength of the blends without catalyst. Water absorption of wheat starch/copolymer blends was between 150% and 250%, higher than that of the blends with the homopolymer, which was between 100% and 150% after soaking in water. The onset temperature of thermal decomposition was between 290 and 300 °C for all the blends, although the presence of sodium carbonate resulted in a decrease in the onset temperature of thermal decomposition by about 60 °C.  相似文献   

20.
Tensile properties of the polyimide and copolyimide films based on two dianhydrides, pyromellitic dianhydride (PMDA) and 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) and two diamines, 4,4-oxydianiline (ODA), and a proprietary aromatic diamine (PD) have been described. The tensile strength of the films containing higher proportions of BTDA or PMDA and PD is much higher (except the fully rigid film based on PMDA-PD which is brittle in nature) than the films containing higher proportion of ODA moiety. The films containing PD as the diamine moiety exhibit high initial moduli than the films containing exclusively or mainly ODA as the diamine moiety. The films having higher concentration of the -O- linkage originated from diamine ODA are found to exhibit higher elongation values. There is found to be no direct correlation between ηinh of the precursor casting solutions and mechanical properties of structurally different polyimide/copolyimide films. For a particular polyimide or copolyimide film, the tensile strength value is found to be less sensitive than the elongation to the variation of ηinh value of the precursor poly(amic acid) or copoly(amic acid). Tensile strength and elongation of the film, basically rigid in nature, may be improved by post-curing at 360°C/370°C. While Kapton H film retains 78% and 63.5% of its tensile strength and % elongation at break (% Eb) respectively after hot-wet mechanical test, the film based on BTDA 80, PMDA 20 and PD shows an increase of about 27% and 22% in its tensile strength and % Eb respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号