首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Polypropylene (PP)-montmorillonite nanocomposites have been prepared using isotactic PP homopolymers with different rheological properties, and a maleic anhydride grafted PP. Morphology and structure of the composites were investigated by using X-ray techniques (WAXD, SAXS) and transmission electron microscopy (TEM). The absence of pristine clusters of the clay and the presence of intercalated and exfoliated structures were shown for all the investigated samples. The nanocomposite prepared by using maleic anhydride grafted PP showed a widespread exfoliation. The thermal behaviour and degradation have been studied by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The incorporation of the montmorillonite improves the thermal stability in air atmosphere of all the investigated PPs, thanks to a physical barrier effect of the silicate layers.  相似文献   

2.
The thermal properties and fire behaviour of polypropylene (PP) nanocomposites were investigated using differential scanning calorimetry, dynamic-mechanical analysis, thermogravimetric analysis and glow wire test. In order to study the morphological structure of the materials obtained, TEM and XRD analyses were also carried out. The nanocomposites were prepared using the melt intercalation technique in a co-rotating intermeshing twin screw extruder. Particular attention was given to studying the influence of different processing conditions (barrel temperature profile and screw rate) and compositions of PP-nanoclay blends (clay content, use of compatibiliser) on the thermal properties of the nanocomposites.The results show that all the properties analysed were strongly influenced by the nanocomposite composition; instead, the processing conditions greatly affect only the dynamic-mechanical properties. DSC curves show that the crystallinity is deeply influenced by the presence of the clay in the matrix, owing to the fact that the filler acts as nucleating agent. DMA curves show that materials processed at low temperature profile and high shear stress, i.e. when a good clay dispersion is achieved, are characterised by an enhanced modulus, thus indicating that the incorporation of clay into the PP matrix remarkably enhances its stiffness and has good reinforcing effects. TGA traces in oxidizing atmosphere show a drastic shift of the weight loss curve towards higher temperature and no variation of the onset temperature (i.e. the temperature at which degradation begins). The TGA analyses in inert atmosphere show instead marked increase of this parameter (about 200 °C) and no shift of weight loss curves. Glow wire results highlight that polymer nanocomposites are characterised by enhanced fire behaviour.  相似文献   

3.
In this study, the use of low molecular weight oxidized polyethylenes (OxPE) with different molecular weight and acid number as a new type of compatibilizer in low density polyethylene (LLDPE)/org-clay nanocomposite preparation was examined. Nanocomposites having 5 phr (part per hundred) org-clay were prepared by melt processing. The effect of compatibilizer polarity and clay dispersion on the thermal, mechanical and barrier properties of the nanocomposites was investigated. It was observed that oxidized polyethylenes created a strong interfacial interaction between the clay layers and polymer phase based on the analysis of the linear viscoelastic behavior of the samples by small amplitude oscillatory rheometry. We showed that physical performance of the nanocomposites is not only affected by clay dispersion but also both melt viscosity and polarity of the oxidized polyethylene compatibilizers. It was found that oxygen permeability values of the nanocomposite samples prepared with the oxidized polyethylenes were lower than that of a sample prepared with conventional compatibilizer, maleic anhydride grafted polyethylene (PE-g-MA).  相似文献   

4.
The thermal properties and combustion behaviour of new PE–hydrotalcites nanocomposites are described. Hydrotalcites were synthesized and then intercalated with stearate anion, because of the compatibility of long alkyl chain with polyethylene chains. The presence of inorganic filler shields PE from thermal oxidation, shifting the temperature range of volatilisation towards that of thermal degradation in nitrogen, and brings to a reduction of 55% in heat release rate during combustion.  相似文献   

5.
Six kinds of organoclays were prepared through three kinds of polyols (PTMG, PEA and PCL) to investigate the effects of molecular weight and the chemical structure of organifiers. PTMG based organoclays showed higher ion-exchanged fraction than other organoclays and long chain organifier showed better efficiency in ion-exchanged fraction in the case of PTMG based organifiers. From WAXD and TEM analysis, it was confirmed that PTMG based organoclays formed partially exfoliated or fully exfoliated silicate layer structures. PDLA/clay nanocomposites were prepared by in-situ ring-opening polymerization of D-lactide with PTMG based organoclays as macro-initiators in the presence of equimolar Sn(Oct)2/PPh3 complex catalysts. The molecular weight of PDLA/clay nanocomposite decreased as increasing the feeding amount of organoclay because organoclay had hydroxyl terminal groups which can initiate the ring-opening polymerization of D-lactide. From TGA analysis, thermal stabilities of PDLA/clay nanocomposites improved with increasing organoclay content. From WAXD and TEM analysis, organoclay which was prepared by high molecular weight of PTMG based organifier was effective on the exfoliation of silicate layers in the in-situ polymerized PDLA/clay nanocomposite.  相似文献   

6.
This paper presents a study of polyethersulfone (PES)/halloysite nanotube (HNTs) nanocomposites prepared by melt compounding either through a simple extrusion process or via a water-assisted extrusion procedure. Scanning and transmission electron microscopy techniques are combined with rheological measurements to assess the influence of polymer end groups (–Cl or –OH) and water injection on the HNTs dispersion state. A morphological transition form microcomposite to nanocomposite is achieved when replacing –Cl chain ends of PES by –OH groups, especially when water is injected during processing. By a combination of Soxhlet extraction and thermogravimetric analysis, we show that some PES(OH) chains are covalently bonded onto the aluminosilicate surface during extrusion. A mechanism describing the physico-chemical action of water is presented. The best system in terms of clay dispersion has been retained to characterize PES-HNTs nanocomposites with respect to their thermo-mechanical, thermal and fire (mass loss calorimetry and UL-94) properties. Dynamic mechanical analysis shows a significant enhancement in the storage modulus of halloysite-based nanocomposites when compared to the unfilled matrix. The improved thermal and thermo-oxidative stability of PES in presence of HNTs is mainly attributed to the labyrinth effect provided by individually dispersed nanotubes, which is reinforced during the decomposition process by the formation of a protective charred ceramic surface layer. The mechanism of action of HNTs for fire retardancy of PES presumably arises from a synergistic effect between physical (i.e. ceramic-like structure formation and mechanical reinforcement of the intumescent char) and chemical (i.e. charring promotion) processes taking place in the condensed phase. According to this study, the straightforward and cost-effective melt compounding route could pave the way for future development of high-performance nanoscale polymeric materials combining enhanced thermal properties and excellent flame retardant behaviour.  相似文献   

7.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

8.
Ammonium surfactants are commonly used as clay organomodifiers in nanocomposites. Their effect on the thermal- and thermo-mechanical degradation of polyhydroxyalkanoates (PHAs) is reported. Two poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) grades were tested and compared to polyhydroxybutyrate (PHB). Thermal stabilities were determined from thermogravimetric data and determination of molecular weight changes after processing was performed. The data revealed that all surfactants enhance the PHBV degradation. The results also highlight the preponderant effect of the initial Mw rather than the HV content on the thermal stability. The thermo-mechanical study confirmed the role of surfactants and their different behaviour towards PHBV degradation. This study demonstrates that all surfactants enhance the PHA degradation since their decomposition products most likely act as catalytic agents.  相似文献   

9.
Exfoliated clay nanocomposites of flame retarded/glass fibre reinforced polyamide 6 were prepared by twin-screw extrusion compounding. A flame retardant system based on phosphorus compounds and zinc borate was used at various levels in glass fibre reinforced PA6 and nanocomposites. Thermal stability and combustion behaviours were evaluated by TGA, LOI, UL94 and cone calorimetry. Substitution of a certain fraction of the flame retardant with nanoclays was found to significantly reduce the peak heat release rate and delay ignition in the cone calorimeter. Moreover, remarkable improvements were obtained in LOI along with maintained UL94 ratings. Residue characterization by FTIR, XRD and SEM ascribed the enhanced flame retardancy of nanocomposite formulations to the formation of a glassy boron/aluminium phosphate barrier reinforced by clay layers at the nanoscale. The physically strong and consolidated barriers formed from nanocomposites were much more effective in impeding heat and mass transfer compared to those from conventional formulations.  相似文献   

10.
Polystyrene/organo-montmorillonite nanocomposites were prepared via solution blending method, using CHCl3 and CCl4 as solvents. The clay used was organically modified by hexadecyltrimethyl-ammonium bromide (CTAB) at various surfactant loadings. Intercalated nanocomposite structure was obtained using CHCl3 as solvent while exfoliated or partially exfoliated was probably the predominated form in the case of CCl4, as shown by X-ray diffraction measurements. Enhancement in thermal stability and in water barrier properties was observed for PS-nanocomposites compared to that of pristine polymer as indicated by thermogravimetric analysis and water vapor transmission measurements. This increment was more prevalent for nanocomposites prepared with carbon tetrachloride as solvent.  相似文献   

11.
Nanocomposites based on biodegradable poly(?-caprolactone) organo-modified clay have been prepared by melt intercalation using a twin-screw extruder. The screw configuration developed allowed us to obtain an intercalated/exfoliated nanocomposite structure using a modified montmorillonite containing no polar groups, in contrast to previous work using mainly alkyl ammonium containing hydroxyl polar groups in poly(?-caprolactone). Montmorillonite nanocomposites were prepared using a specific extrusion profile from a 30 wt% masterbatch of organo-modified clay, which was then diluted at 1, 3 and 5%. Intercalated and/or exfoliated nanocomposites structures were assessed using rheological procedures and confirmed by transmission electron microscopy analysis. Mechanical and thermal properties were found to be strongly dependent on morphology and clay percentage. Crystallinity was only slightly affected by the clay addition. Effect of exfoliation on Young's modulus and thermal stability was investigated. Young's modulus increased significantly and onset degradation temperature measured by TGA was significantly reduced for an exfoliated nanocomposite composition containing 5 wt% organoclay.  相似文献   

12.
The synthesis of nanocomposites via emulsion polymerization was investigated using methyl methacrylate (MMA) monomer, 10 wt % montmorillonite (MMT) clay, and a zwitterionic surfactant octadecyl dimethyl betaine (C18DMB). The particle size of the diluted polymer emulsion was about 550 nm, as determined by light scattering, while the sample without clay had a diameter of about 350 nm. The increase in the droplet size suggests that clay was present in the emulsion droplets. X-ray diffraction indicated no peak in the nanocomposites. Transmission electron microscopy showed that emulsion polymerization of MMA in the presence of C18DMB and MMT formed partially exfoliated nanocomposites. Differential scanning calorimetry showed an increase of 18 degrees C in the glass transition temperature (Tg) of the nanocomposites. A dynamic mechanical thermal analyzer also verified a similar Tg increase, 16 degrees C, for the partially exfoliated nanocomposites over poly(methyl methacrylate) (PMMA). Thermogravimetric analysis indicated a 37 degrees C increase in the decomposition temperature for a 20 wt % loss. A PMMA nanocomposite with 10 wt % C18DMB-MMT was also synthesized via in situ polymerization. This nanocomposite was intercalated and had a Tg 10 degrees lower than the emulsion nanocomposite. The storage modulus of the partially exfoliated emulsion nanocomposite was superior to the intercalated structure at higher temperatures and to the pure polymer. The rubbery plateau modulus was over 30 times higher for the emulsion product versus pure PMMA. The emulsion technique produced nanocomposites of the highest molecular weight with a bimodal distribution. This reinstates that exfoliated structures have enhanced thermal and mechanical properties over intercalated hybrids.  相似文献   

13.
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.  相似文献   

14.
The degradation of polylactide (PLA)/Cloisite 30B nanocomposites under natural weathering was investigated as a function of clay loadings (1, 3 and 5 wt.%) for up to 130 days using Fourier transform infrared (FT-IR) spectroscopy, size exclusion chromatography (SEC), nanoindentation measurements, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). For comparative purposes, the neat PLA was also considered. The FT-IR results showed that the photo-oxidation mechanism of PLA was not modified in the presence of Cloisite 30B, but only the degradation rates were accelerated. Moreover, the photo-oxidative degradation of PLA nanocomposite samples led to the formation of vinyl unsaturation, carbonyls, anhydrides and hydroperoxides groups as a result of the occurrence of several chemical mechanisms simultaneously. The decrease of the weight-average molecular weight, and the number-average molecular weight associated with an enhanced polydispersity of the nanocomposite samples indicated that chain scission was the most prominent phenomenon in natural weathering. The thermal degradation of the PLA was faster in the presence of clay. Modulus and hardness measured by nanoindentation increased slightly with exposure time for both neat PLA and PLA nanocomposite samples; the increase is also a function of the clay content. Finally, the weathering effect on the morphology of exposed samples observed by SEM revealed that the fractured surfaces exhibited many voids and cracks. These defects were much more pronounced for the PLA nanocomposites.  相似文献   

15.
Dialkyl imidazolium salt with better thermal stability than the commonly used dimethyldioctadecyl ammonium salt was synthesized and ion exchanged on the montmorillonite surface. Polypropylene nanocomposites with different volume fractions of the obtained organo-montmorillonite (OMMT) were prepared and the effect of the modified clay on the gas barrier and mechanical properties was studied. Wide angle X-ray diffraction (WAXRD) and transmission electron microscopy (TEM) were used to investigate the microstructure obtained. Thermal behavior of the composites analyzed by thermogravimetric analysis was observed to enhance significantly with the filler volume fraction. The gas permeation through the nanocomposite films markedly decreased with augmenting the filler volume fraction. The decrease in the gas permeation was even more significant than through the composites with ammonium treated montmorillonite. Better thermal behavior of the organic modification owing to the delayed onset of degradation hindered the interface degradation along with detrimental side reactions with polymer itself. Transmission electron microscopic studies indicated the presence of mixed morphology i.e., single layers and the tactoids of varying thicknesses in the composites. The crystallization behavior of polypropylene remained unaffected with OMMT addition. A linear increase in the tensile modulus was observed with filler volume fraction owing to partial exfoliation of the clay.  相似文献   

16.
Based on the fibrous silicates (palygorskite, PT) organically modified by water-soluble polyvinylpyrrolidone (PVP), poly(ethylene terephthalate) (PET) nanocomposite with good dispersion of the PT nano-particles was prepared via in situ polycondensation. The thermal degradation behavior of PET and PET/PT nanocomposite was investigated by thermogravimetric analysis (TGA) under non-isothermal conditions at various heating rates in air and nitrogen, respectively. The apparent activation energies of the samples were evaluated by Kissinger and Flynn-Wall-Ozawa method. It is suggested that, during thermal decomposition in nitrogen, the clay as a mass-transport protective barrier can slow down degradation of polymer, but the catalytic effect of metal derivatives in clays may accelerate the decomposition behavior of PET. The combination of these two effects determines the final thermal stability of nanocomposite. However, in air atmosphere, the oxidative thermal stability of PET/PT nanocomposite was obviously superior to that of pure PET.  相似文献   

17.
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes.  相似文献   

18.
In this paper poly(vinyl chloride)/clay nanocomposites were prepared by melt intercalation using a single screw extruder. Problems with thermal stability of these nanocomposites during compounding were largely eliminated by pre-treatment of the organoclay with plasticizer (dioctyl phthalate), which created a barrier between polymer and quaternary amine. These nanocomposite materials were analyzed with respect to their morphology. The intercalation, exfoliation, nano-phase dispersion and orientation were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD). Moreover, different types of sample preparation for these techniques were tested as well. It was found that partially intercalated and disordered structure arose in poly (vinyl chloride) composites containing sodium type of montmorillonite, while a fine dispersion of partial to nearly full exfoliation of individual montmorillonite layers in poly (vinyl chloride) matrix was observed when this clay was organically modified. Finally, the influence of different mixing time (in extruder) on nano-phase morphology was surveyed.  相似文献   

19.
To better understand the effect of rectorite and carbon black (CB) on the aging performance of styrene-butadiene rubber (SBR), SBR/CB, SBR/CB/rectorite and SBR/rectorite nanocomposites with the same total filler loading were prepared. The microstructure of the three SBR nanocomposites was characterized by XRD, TEM and SEM. After thermal aging, oxygen-containing molecules were found to be formed in the SBR nanocomposites, as verified by FTIR analysis. The SBR/rectorite nanocomposite showed the highest aging coefficient and the lowest change rate of tensile strength and stress at 100% strain among the three SBR nanocomposites, indicating that the introduction of nano-dispersed rectorite layers can enhance the thermal aging resistance of the nanocomposites. For the SBR/CB/rectorite nanocomposite, the addition of CB helped to improve the interfacial compatibility between the filler and matrix, resulting in the best crack resistance as the aged SBR/CB/rectorite nanocomposite always demonstrated the least cracks on the surface during either stretching or bending experiments.  相似文献   

20.
The isothermal crystallization behaviour of polylactic acid (PLA) and a clay nanocomposite of have been examined using differential scanning calorimetry. The data obtained clearly indicates that the presence of the nanocomposite particles in the composite material influences the crystallization kinetics of the PLA when crystallized both from the solid amorphous state as well as from the melt. When crystallized from the melt the presence of the clay nano-particles appears to be influencing the nucleation and crystal growth rate of the PLA such that the crystallization rate is enhanced by a factor of about 15 to 20. This result is of tremendous significance in identifying the processing window for the production of foamed nanocomposites from PLA. In addition the effect of thermal exposure at 200°C on the crystallization behaviour of these materials has been investigated, with the results suggesting that holding these materials at 200°C for periods of time up to 60 min in an inert atmosphere only has a marginal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号