首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

2.
Let G be a simple connected graph and α be a given real number. The zeroth-order general Randi? index of 0Rα(G) is defined as ∑vV(G)[dG(v)]α, where dG(v) denotes the degree of the vertex v of G. In this paper, for any α(≠0,1), we give sharp bounds of the zeroth-order general Randi? index 0Rα of all bicyclic graphs with n vertices and k pendent vertices.  相似文献   

3.
Let G be a simple connected graph and α be a given real number. The zeroth-order general Randi? index of G is defined as 0 R α (G)=∑ vV(G)[d G (v)] α , where d G (v) denotes the degree of the vertex v of G. In this paper, for any α>2, we give sharp upper bounds of the zeroth-order general Randi? index 0 R α of all conjugated tricyclic graphs with 2m vertices.  相似文献   

4.
The Randi? index of a simple connected graph G is defined as ∑uvE(G)(d(u)d(v))-1/2. In this paper, we present a sharp lower bound on the Randi? index of cacti with r pendants.  相似文献   

5.
Let G be a simple connected graph with n vertices and m edges. Denote the degree of vertex vi by d(vi). The matrix Q(G)=D(G)+A(G) is called the signless Laplacian of G, where D(G)=diag(d(v1),d(v2),…,d(vn)) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let q1(G) be the largest eigenvalue of Q(G). In this paper, we first present two sharp upper bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G and give a new proving method on another sharp upper bound for q1(G). Then we present three sharp lower bounds for q1(G) involving the maximum degree and the minimum degree of the vertices of G. Moreover, we determine all extremal graphs which attain these sharp bounds.  相似文献   

6.
The general Randi? index Rα(G) is the sum of the weights (dG(u)dG(v))α over all edges uv of a (molecular) graph G, where α is a real number and dG(u) is the degree of the vertex u of G. In this paper, for any real number α≤−1, the minimum general Randi? index Rα(T) among all the conjugated trees (trees with a Kekulé structure) is determined and the corresponding extremal conjugated trees are characterized. These trees are also extremal over all the conjugated chemical trees.  相似文献   

7.
The general Randi? index of a molecular graph G is the sum of [d(u)d(v)]α over all edges uvG, where d(v) denotes the degree of the vertex v in G and α is an arbitrary number. When α=−1/2, it is called the Randi? index. Delorme et al. stated a best possible lower bound on the Randi? index of a triangle-free graph with given minimum degree. Their false proof was pointed out by Liu et al. In this note, we derive some sharp bounds on the general Randi? index which implies their lower bound for triangle-free graphs of order n with maximum degree at most n/4, and also prove it for triangle-free graphs with small minimum degree.  相似文献   

8.
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f:V(G)→{0,1,2,…,k} with the following satisfied for all vertices u and v: |f(u)-f(v)|?diam(G)-dG(u,v)+1, where dG(u,v) is the distance between u and v. We prove a lower bound for the radio number of trees, and characterize the trees achieving this bound. Moreover, we prove another lower bound for the radio number of spiders (trees with at most one vertex of degree more than two) and characterize the spiders achieving this bound. Our results generalize the radio number for paths obtained by Liu and Zhu.  相似文献   

9.
The general Randi? index R α (G) is the sum of the weight d(u)d(v) α over all edges uv of a graph G, where α is a real number and d(u) is the degree of the vertex u of G. In this paper, for any real number α?≠?0, the first three minimum general Randi? indices among trees are determined, and the corresponding extremal trees are characterized.  相似文献   

10.
The general Randi? index R α (G) of a graph G is the sum of the weights (d(u)d(v)) α of all edges uv of G, where α is a real number(α≠0) and d(u) denotes the degree of the vertex u. We have known that P n has minimum general Randi? index for α>0 among trees when n≥5. In this paper, we prove that P n,3 has second minimum general Randi? index for α>0 among trees when n≥7.  相似文献   

11.
C. Balbuena 《Discrete Mathematics》2008,308(16):3526-3536
For a connected graph G, the rth extraconnectivity κr(G) is defined as the minimum cardinality of a cutset X such that all remaining components after the deletion of the vertices of X have at least r+1 vertices. The standard connectivity and superconnectivity correspond to κ0(G) and κ1(G), respectively. The minimum r-tree degree of G, denoted by ξr(G), is the minimum cardinality of N(T) taken over all trees TG of order |V(T)|=r+1, N(T) being the set of vertices not in T that are neighbors of some vertex of T. When r=1, any such considered tree is just an edge of G. Then, ξ1(G) is equal to the so-called minimum edge-degree of G, defined as ξ(G)=min{d(u)+d(v)-2:uvE(G)}, where d(u) stands for the degree of vertex u. A graph G is said to be optimally r-extraconnected, for short κr-optimal, if κr(G)?ξr(G). In this paper, we present some sufficient conditions that guarantee κr(G)?ξr(G) for r?2. These results improve some previous related ones, and can be seen as a complement of some others which were obtained by the authors for r=1.  相似文献   

12.
Suppose that G is an undirected graph, and that H is a spanning subgraph of Gc whose edges induce a subgraph on p vertices. We consider the expression α(GH)-α(G), where α denotes the algebraic connectivity. Specifically, we provide upper and lower bounds on α(GH)-α(G) in terms of p, and characterise the corresponding equality cases. We also discuss the density of the expression α(GH)-α(G) in the interval [0,p]. A bound on α(GH)-α(G) is provided in a special case, and several examples are considered.  相似文献   

13.
Let G be a molecular graph. The eccentric connectivity index ξc(G) is defined as ξc(G)=∑uV(G)degG(u)εG(u), where degG(u) denotes the degree of vertex u and εG(u) is the largest distance between u and any other vertex v of G. In this paper exact formulas for the eccentric connectivity index of TUC4C8(S) nanotube and TC4C8(S) nanotorus are given.  相似文献   

14.
We give sufficient conditions for a graph to have degree bounded trees. Let G be a connected graph and A a vertex subset of G. We denote by σk(A) the minimum value of the degree sum in G of any k independent vertices in A and by w(GA) the number of components in the induced subgraph GA. Our main results are the following: (i) If σk(A)≥|V(G)|−1, then G contains a tree T with maximum degree at most k and AV(T). (ii) If σkw(GA)(A)≥|A|−1, then G contains a spanning tree T such that dT(x)≤k for every xA. These are generalizations of the result by Win [S. Win, Existenz von Gerüsten mit Vorgeschriebenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 263-267] and the degree conditions are sharp.  相似文献   

15.
A graph Γ is distance-transitive if for all vertices u, v, x, y such that d(u, v) = d(x, y) there is an automorphism h of Γ such that uh = x, vh = y. We show how to find a bound for the diameter of a bipartite distance-transitive graph given a bound for the order |Gα| of the stabilizer of a vertex.  相似文献   

16.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if it contains all vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. The spanning connectivity of G, κ*(G), is defined to be the largest integer k such that G is w*-connected for all 1?w?k if G is a 1*-connected graph. In this paper, we prove that κ*(G)?2δ(G)-n(G)+2 if (n(G)/2)+1?δ(G)?n(G)-2. Furthermore, we prove that κ*(G-T)?2δ(G)-n(G)+2-|T| if T is a vertex subset with |T|?2δ(G)-n(G)-1.  相似文献   

17.
The restricted connectivity κ(G) of a connected graph G is defined as the minimum cardinality of a vertex-cut over all vertex-cuts X such that no vertex u has all its neighbors in X; the superconnectivity κ1(G) is defined similarly, this time considering only vertices u in G-X, hence κ1(G)?κ(G). The minimum edge-degree of G is ξ(G)=min{d(u)+d(v)-2:uvE(G)}, d(u) standing for the degree of a vertex u. In this paper, several sufficient conditions yielding κ1(G)?ξ(G) are given, improving a previous related result by Fiol et al. [Short paths and connectivity in graphs and digraphs, Ars Combin. 29B (1990) 17-31] and guaranteeing κ1(G)=κ(G)=ξ(G) under some additional constraints.  相似文献   

18.
For a given graph G its Szeged weighting is defined by w(e)=nu(e)nv(e), where e=uv is an edge of G,nu(e) is the number of vertices of G closer to u than to v, and nv(e) is defined analogously. The adjacency matrix of a graph weighted in this way is called its Szeged matrix. In this paper we determine the spectra of Szeged matrices and their Laplacians for several families of graphs. We also present sharp upper and lower bounds on the eigenvalues of Szeged matrices of graphs.  相似文献   

19.
A 1-approximation of connected graph G=(V,E) is a tree T=(V,E) with the same vertex set such that for every two vertices |dG(u,v)−dT(u,v)|1. A polynomial time algorithm is designed for finding such a tree.  相似文献   

20.
Let Gn denote the empirical distribution based on n independent uniform (0, 1) random variables. The asymptotic distribution of the supremum of weighted discrepancies between Gn(u) and u of the forms 6wv(u)Dn(u)6 and 6wv(Gn(u))Dn(u)6, where Dn(u) = Gn(u)?u, wv(u) = (u(1?u))?1+v and 0 ? v < 12 is obtained. Goodness-of-fit tests based on these statistics are shown to be asymptotically sensitive only in the extreme tails of a distribution, which is exactly where such statistics that use a weight function wv with 12 ? v ? 1 are insensitive. For this reason weighted discrepancies which use the weight function wv with 0 ? v < 12 are potentially applicable in the construction of confidence contours for the extreme tails of a distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号