首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Experiments were carried out to investigate the effects of surface charge density on emulsion kinetics and secondary particle formation in emulsifier-free seeded emulsion polymerization. Three monodisperse seed latices with different surface charge densities were prepared from styrene/NaSS comonomers using the two-stage shot-growth process. After purification of the seed latices, they were used in seeded emulsion polymerization of methyl methacrylate. The initial rate of poly-merization and the average number of radicals per particle for the high-charged seed latex system were lower than that of the low-charged case. The low rate of polymerization resulted from the low rate of radical adsorption in the beginning of the reaction due to the electrical repulsion between seeds and oligomeric radicals. In this case, because of the secondary particles, particle size distribution became bimodal. The low rate of radical adsorption and the formation of secondary particles reduced the average number of radicals per particle. The rate of polymerization (R p) increased, but the rate of polymerization per particle (R p/N p) decreased. Received: 9 December 1996 Accepted: 7 March 1997  相似文献   

2.
Emulsion copolymerizations of styrene were carried out with four structurally different ionic comonomers namely acrylic acid (AAc), methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), and sodium styrene sulfonate (NaSS) to study the effect of monomer structure on the copolymerization kinetics and size, morphology, charge density, and the self-assembly of the particles. The copolymerization kinetics was found to be highly dependent upon the ionic comonomer structure, and the nature of this dependence altered from homogeneous to micellar nucleation regime. The decrease in particle size (D) with increasing surfactant concentration (S) was observed in all the cases; however, the exponents of D vs. S were not similar for all the cases. In the homogeneous nucleation regime, exponents followed the order as AAc (0.446) > MAA (0.396) > NaSS (0.252) > HEMA (0.241), whereas the order was almost reversed in the micellar nucleation regime as NaSS (0.406) > HEMA (0.228) > AAc (0.206) > MAA (0.172). The hydrophobic/hydrophilic character and the steric factors were found to be the driving force for the variation in D vs. S exponents with ionic comonomer structure. The presence of charges on the particle surface contributed by the ionic comonomers triggered the self-assembly of the particles upon sedimentation and diffracted visible light obeying Bragg's law.  相似文献   

3.
Batch emulsifier-free copolymerizations of styrene (S) and butyl acrylate (BuA) have been performed for a S/BuA weight ratio = 50/50 in the presence of two types of functional comonomers [methacrylic acid (MAA) at different pHs] or potassium sulfopropylmethacrylate (SPM) and two initiators [potassium persulfate or 4–4′azobiscyanopentanoic acid (AZO)]. The use of AZO/MAA system results in the formation of polymer particles with only surface carboxylic end groups. The particle size of the final latexes can be adjusted with the MAA concentration, provided the polymerization is carried out at pH > 6.5. However, the higher the MAA concentration, the sooner the polymerization levels off in conversion. With the K2S2O8/SPM system, particles bearing only sulfate and sulfonate groups are produced and the polymerization is complete. In that case, the particle size of the final latexes is smaller than with the previous system and 30% of the SPM is fixed on the particle surface, instead of 10% with MAA. Using SPM, a too high functional monomer concentration results in the latex destabilization caused by the formation of a large amount of polyelectrolytes. Kinetic studies indicate that most of the functional monomer is incorporated onto the particle surface during the last 30% conversion of the polymerization. A tentative explanation of such a behavior is discussed, based on the existence of two polymerization loci in the latex system.  相似文献   

4.
Polystyrene (PSt) seed latex was first prepared via soap‐free emulsion polymerization in the presence of a small amount of methacrylic acid using ammonium persulfate as initiator, and then seeded emulsion polymerization of sodium 4‐styrenesulfonate (NaSS) and St was carried out to synthesize P(St‐NaSS) core latex using 2,2′‐azobisisobutyronitrile as initiator. After that, P(St‐NaSS)/CaCO3 core‐shell nanoparticles were fabricated by sequentially introducing Ca(OH)2 aqueous solution and CO2 gas into the core latex. The morphology of the core and core‐shell nanoparticles was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and the state of CaCO3 shell was confirmed with high‐resolution scanning transmission electron microscope (HR‐STEM) and selected area electron diffraction (SAED). Results showed that PNaSS chains were successfully grafted onto the PSt seed surface, and length of the PNaSS "hairs" could be modulated by adjusting NaSS amount. Sulfonic groups of the PNaSS hairs served as additives in the formation and stabilization of amorphous CaCO3(ACC) and prevented ACC from sequent transformation into crystalline states. The amount of the anchored CaCO3 increased with the growth of PNaSS hair length, and reached 51 wt% (by thermalgravimetric analysis) under the optimal encapsulating temperature of 45°C. Moreover, the forming mechanism of P(St‐NaSS)/CaCO3 core‐shell nanoparticles was proposed.  相似文献   

5.
Water-soluble polyelectrolytes from 2-acrylamido-2-methyl-1-propane sulfonic acid (APSA) were obtained by radical polymerization with different comonomers which contain weak acid and neutral groups. These copolymers were investigated as polyelectrolytes and polychelatogens, in view of their metal ion binding properties using the liquid-phase polymer-based retention (LPR) technique under different experimental conditions. The metal ions investigated were: Ag(I), Co(II), Cu(II), Zn(II), Cd(II), and Pb(II). APSA allowed increase metal ion interaction of weak acid, meanwhile did not improve the metal ion interaction of neutral monomers at these experimental conditions. Results indicated that retention capability depended strongly on the structure of the polyelectrolyte, arrangement of comonomers at main chain, pH, and the filtration factor, Z.  相似文献   

6.
CO2‐switchable polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl methacrylate) (PBMA) latexes were prepared via surfactant‐free emulsion polymerization (SFEP) under a CO2 atmosphere, employing N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMAm) as a CO2‐switchable, water‐soluble, and hydrolytically stable comonomer. The conversion of the SFEP of styrene reaches >95% in less than 5 h. The resulting latexes have near monodisperse particles (PDI ≤ 0.05), as confirmed by DLS and TEM. The latexes could be destabilized by bubbling nitrogen (N2) and heating at 65 °C for 30 min, and easily redispersed by only bubbling CO2 for a short time without using sonication. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1059–1066  相似文献   

7.
<正>In this study,P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St) and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(StNaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St + MAA) and 2 mol%of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol%and 34.6 mol%,respectively.  相似文献   

8.
A previously proposed method based on soap-free emulsion polymerization with an amphoteric initiator for producing micrometer-sized polystyrene particles was extended to application with methyl methacrylate (MMA). The aggregation and dispersion stability of polymer particles, which have ionizable groups arising from initiator radicals, can be controlled by adjusting the pH of the reaction system accompanied with the addition of ionic monomer. Polymerizations were carried out with 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate amphoteric initiator, NH(3)/NH(4)Cl pH buffer, and sodium p-styrenesulfonate anionic monomer (NaSS) in ranges of MMA concentration (0.58-2.32 kmol/m(3) H(2)O) and NH(3) concentration (2.5-20 mol/m(3) H(2)O) at fixed concentrations of 5 mol/m(3) H(2)O initiator, 10 mol/m(3) H(2)O NH(4)Cl, and 1 mol/m(3) H(2)O NaSS at 65 degrees C. The addition of NaSS during the polymerization could improve stability in dispersion of particles, which coagulated in the absence of NaSS after the disappearance of monomer drops. An increase in the monomer concentration in the present method could enlarge the particle size without lowering the monodispersity of the particle size distribution. On the other hand, an increase in NH(3) concentration decreased the particle size. The highest monodispersity of particle sizes was obtained at a NH(3) concentration of 5 mol/m(3) H(2)O, which gave an average size of 1.5 microm and a coefficient of variation of particle size distribution of 2.2% that was much smaller than the standard criterion for monodispersity, 10%.  相似文献   

9.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

10.
ABSTRACT

We prepared nano/microgels by precipitation copolymerization of N-isopropylacrylamide (NIPAAm), and one of three different carboxyalkyl methacrylamides [methacryloylamido hexanoic acid (M5), 8-methacryloylamido octanoic acid (M7), and 11-methacryloylamido undecanoic acid (M10)], either in the acid forms or as carboxylates (potassium salts). The hydrodynamic diameter (Dh) of the nano/microgels prepared with the carboxylates was smaller (≈100 nm for M10 copolymers), compared to the size of homopolymeric NIPAAm microgels prepared by dispersion polymerization (around 600 nm), indicating that the carboxylates act as surfactants reducing the size of the seeds during the polymerization process. These materials presented a swollen-shrunken transition temperature (T tr) similar to the T tr of the homopolymeric NIPAAm microgels, without pH sensitivity. On the other hand, the copolymeric microgels prepared from the acid form of the comonomers have a similar or bigger size than NIPAAm microgels. For these copolymers, the T tr can be tuned by the type and proportion of acid comonomer used and present pH sensitivity. This is important for biomedical applications such as positive temperature control release. Polyelectrolyte titration demonstrates that the nano/microgels prepared with the carboxylates behave as hard spheres, while the microgels prepared with the weak acid behave as porous materials.  相似文献   

11.
采用湿法球磨和原位热解碳包覆相结合的方法, 分别以硬脂酸、柠檬酸、聚乙二醇-6000 (PEG-6000)、β-环糊精为碳源, 制备了不同结构的Na2MnPO4F/C 复合材料, 并研究了它们作为锂离子电池正极材料的电化学行为. 通过X射线衍射(XRD)、扫描电镜(SEM)、BET比表面积测试、恒流充放电等表征手段, 比较和分析了产物的结构、形貌及电化学性能. 研究结果表明, 由不同碳源制备的材料在形貌和颗粒尺寸上有明显差异, 进而对它们的电化学性能造成很大影响. 影响电化学性能的关键因素在于材料一次颗粒的大小. 其中, 以柠檬酸为碳源制备的样品呈现出典型的微纳结构和最小的一次颗粒(10-40 nm). 并给出最佳的电化学性能: 在1.5-4.8 V电压范围内, 以5 mA·g-1充放电电流获得的首次放电比容量约为80 mAh·g-1, 且循环稳定性良好.  相似文献   

12.
Magnetically loaded polymeric nano-particles carrying functional groups on their surface were prepared by a two-stage process. In the first stage, super-paramagnetic magnetite (Fe3O4) nano-particles were produced by a co-precipitation method from the aqueous solutions of FeCl2·4H2O and FeCl3·6H2O using a NaOH solution. The smallest size obtained was 40.9 nm with poly-dispersity index of 0.194 obtained by using a Zeta Sizer. The effects of Fe2+/Fe3+ molar ratio, stirring rate, temperature, base concentration, and pH on the particle size/size distribution and stability of the dispersions were examined. Increasing the relative concentration of Fe2+ ion and decreasing the stirring rate and pH increased the particle size, while the concentration of NaOH and temperature did not change the particle size significantly. Polymer coating was achieved by emulsion polymerization at high surfactant to monomer ratio of methyl methacrylate (MMA) and acrylic acid which were used as comonomers (comonomer ratio: 90/10 weight) with high surfactant to monomer ratio. The surfactant and initiator were SDS and KPS, respectively. Nano-particles in the range of 115 and 300 nm in diameter were produced depending on recipe. Increasing the Fe3O4/monomer and surfactant/monomer ratios, the KPS concentration caused a decrease in the average diameter. Magnetic properties of the nano-particles were obtained by electron spin resonance and vibrating-sample magnetometer. Most of the polymer-coated nano-particles exhibited super paramagnetic behavior.An erratum to this article can be found at  相似文献   

13.
Copoly(p-phenylene/biphenylene sulfide)s, PPBS were prepared from sodium sulfide trihydate(Na2S·3H2O), p-dichlorobenzene (DCB), and 4,4′-dibromobiphenyl (DBB) comonomers in N-methyl-2-pyrrolidinone (NMP) solvent using an autoclave. The molecular weights of PPBS copolymers were determined by high temperature (210°C) GPC in 1-chloronaphthalene solvent. The reaction temperature had little effect on the molecular weights of PPBS copolymers with water as additive at the level of 3 mol H2O per 1 mol Na2S. PPBS copolymer, however, showed maximum molecular weight of Mw = 24.1 × 103 with the total water content of 9 mol H2O per 1 mol Na2S at an optimum polymerization temperature of 270°C. The resulting PPBS copolymer sample showed higher Tg (by 30°C) and lower Tm (by 10°C) than PPS homopolymer prepared under similar conditions. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The radical co‐ and terpolymerization of perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride (PFSVE) with 1,1‐difluoroethylene (or vinylidene fluoride, VDF or VF2), hexafluoropropene (HFP), chlorotrifluoroethylene (CTFE), and bromotrifluoroethylene (BrTFE) is presented. Although PFSVE could not homopolymerize under radical initiation, it could be copolymerized in solution under a radical initiator with VDF, while its copolymerizations with HFP or CTFE led to oligomers in low yields. The terpolymerizations of PFSVE with VDF and HFP, with VDF and CTFE, or with VDF and BrTFE also led to original fluorinated terpolymers bearing sulfonyl fluoride side‐groups. The conditions of co‐ and terpolymerization were optimized in terms of the nature and the amount of the radical initiators, of the nature of solvents (fluorinated or nonhalogenated), and of the initial amounts of fluorinated comonomers. The different mol % contents of comonomers in the co‐ and terpolymers were assessed by 19F NMR spectroscopy. A wide range of co‐ and terpolymers containing mol % of PFSVE functional monomer ranging from 10 to 70% was produced. The kinetics of copolymerization of VDF with PFSVE enabled to assess the reactivity ratios of both comonomers: rVDF = 0.57 ± 0.15 and rPFSVE = 0.07 ± 0.04 at 120 °C. The thermal and physicochemical properties were also studied. Moreover, the glass transition temperatures (Tgs) of poly(VDF‐co‐PFSVE) copolymers containing different amounts of VDF and PFSVE were determined and the theoretical Tg of poly(PFSVE) homopolymer was deduced. Then, the hydrolysis of the ? SO2F into ? SO3H function was investigated and enabled the synthesis of fluorinated copolymers bearing sulfonic acid functions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1814–1834, 2007  相似文献   

15.
Emulsion polymerization of styrene in the absence of emulsifier with K2S2O8 as initiator produced uniform latices. Incorporation of ca. 0.5% ionic comonomer (sodium styrenesulfonate) reduced the particle size from the range 0.5–1.0 μm achieved in prior emulsifier free formulations to a range of 0.15–0.40 μm. Some advantages achieved by incorporation of ionic comonomer were higher polymer content and independently controllable surface charge density. Particle diameter varied as the 0.64 power of the ratio of ionic strength to comonomer, as the ?0.20 power of initiator concentration, and as the 0.46 power of monomer content. Kinetic data suggest that copolymerization takes place in the aqueous phase, and that nuclei for particle growth are formed by precipitation of the initially water-soluble copolymer. The latex is stabilized by sulfonic acid groups of the comonomer, as well as by sulfate end groups from the initiator.  相似文献   

16.
Soap‐free poly(methyl methacrylate‐ethyl acrylate‐acrylic acid or methacrylic acid) [P(MMA‐EA‐AA or MAA)] particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and acrylic acid (AA) or methacrylic acid (MAA), and the influences of the mass ratio of core/shell monomers used in the two stages of polymerization ([C/S]w) and initiator amount on polymerization, particle size and its distribution were investigated by using different monomer addition modes. Results showed that when the batch swelling method was used, the monomer conversion was more than 96.0% and particle size distribution was narrow, and the particle size increased first and then remained almost unchanged at around 600 nm with the [C/S]w decreased. When the drop‐wise addition method was used, the monomer conversion decreased slightly with [C/S]w decreased, and large particles more than 750 nm in diameter can be obtained; with the initiator amount increased, the particle size decreased and the monomer conversion had a trend to increase; the particle size distribution was broader and the number of new particles was more in the AA system than in the MAA system; but the AA system was more stable than the MAA system at both low and high initiator amount. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The acrylic emulsifier-free emulsion polymerization containing hydrophilic hydroxyl monomer (23 wt.%) in the presence or absence of nano-SiO2 particles was studied. The effects of reaction temperature, level of nano-SiO2, variation of core monomer composite on the coagulum, particle size and monomer conversion were investigated. Transmission electron microscopy (TEM) was used to observe the particle morphology in the presence of nano-SiO2 particles. It showed that the systems produced larger size of particles than that with emulsifier, and the addition of nano-SiO2 particles increased the particle size but decreased the coagulum. When polymerization temperature rose from 65 °C to 80 °C, the coagulum produced decreased greatly irrelative of the existence of nano-SiO2, and the particle size decreased with nano-SiO2 but increased without nano-SiO2. The increase of level of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) in core monomer composite all decreased particle sizes; furthermore, the level of AA had more efficiency than the level of HEMA irrespective of the existence of nano-SiO2 particle.  相似文献   

18.
The objective of the current work was the synthesis of sulphonated core-shell nanolatices and to investigate to which extend it is possible to control the final surface charge of such latices. For this purpose differently sized polystyrene seed latices with average diameters in the size range between 30 and 80 nm were synthesized by emulsion polymerization. To obtain the final latices, a sulphonated comonomer was incorporated in the outer surface shell of the particles by further reaction of the seed latices with styrene and sodium styrene sulphonate (NaSS). In a first test series the seed latex surface was modified with four different amounts of NaSS. In a second test series four different seed latices were reacted with the same amount of NaSS. In the last set of reactions the seed latices were reacted with different amounts of NaSS and in these reactions the ratio of added NaSS to the specific surface area of the seed latex was kept constant to obtain differently sized latices of the same surface charge density. The yield of sulphonic acid groups in the particle shell was found between 57 and 74% after an intensive cleaning step by ion exchange. The results show possibilities for a reproducible synthesis of small sulphonated latex particles with a desired surface charge density.  相似文献   

19.
为弄清各种影响因素对硅溶胶胶粒生长的作用,实验测定了胶粒自发生长速度与温度、pH和胶粒粒径等之间的关系,得到了复杂的胶粒生长过程的一些信息。并根据本实验室提出的硅酸聚合理论推导了胶粒生长速度公式,用该式推出的结果与实验所得结果基本符合,说明该式能较正确地反映胶粒生长规律,因而在哇溶胶实际生产中有一定的参考价值。  相似文献   

20.
In this study, nanostructure polyaniline was prepared from aniline monomer via chemical oxidative polymerization in the presence of ammonium persulfate as an oxidizing agent. Interfacial, emulsion, rapid mixing and ultrasonic techniques are used for polymer synthesis. In the interfacial method, chloroform, n-hexane, hexanole and toluene were used as organic solvents and sulfuric acid, methane sulfonic acid and acetic acid were employed as electrolyte solutions. In the emulsion polymerization, dodecyl benzene sulfonic acid and aqueous solution of hydrochloric acid were used as emulsion agent and electrolyte solution respectively. In rapid mixing reaction and ultrasonic method, hydrochloric acid and salicylic acid were used as dopants. The structure, conductivity, morphology and particle size distribution of prepared polymers were investigated after purification and drying by FTIR spectroscopy, scanning electron microscopy and electrical conductivity measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号