首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The superhydrophobic surface on copper is fabricated by using a simple hydrothermal reaction and subsequent perfluorosilane treatment. The micro‐structured and nano‐structured surface was directly obtained through the hydrothermal reaction of copper sheets with sulfur at 180 °C for 12 h, resulting in the formation of copper sulfide film on the copper substrate. The chemical composition of this film was confirmed using X‐ray photoelectron spectroscopy. After copper sulfide film is treated by perfluorosilane, the superhydrophobic surface with static water contact angle of 153 °C and a low contact angle hysteresis is achieved. The superhydrophobic surface shows strong mechanical stability and can effectively protect the copper substrate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
王凤平  闫姝均 《应用化学》2012,29(11):1291-1296
以棕榈酸-乙醇溶液为疏水剂,利用直接浸泡法在纯铜表面上构筑了超疏水薄膜。 纯铜表面超疏水薄膜的最佳制备条件为:0.03 mol/L棕榈酸-乙醇溶液,室温(20~22 ℃),浸泡144 h。 通过扫描电子显微镜、接触角测量仪、红外光谱仪和高精密电子天平对超疏水表面进行了表征和分析。 实验结果表明,纯铜试样表面形成了100~200 μm大小的草状棕榈酸铜微簇,接触角达到了150°,其具有较好的抗结垢性能。  相似文献   

3.
The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders.  相似文献   

4.
Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way.  相似文献   

5.
A humido-responsive free-standing film has been created using layer-by-layer assembly technique. Polyethylenimine (PEI) at high pH was assembled with poly(acrylic acid) (PAA) at low pH on a Teflon substrate to yield a micro-nanostructured surface that can be made superhydrophobic after being coated with a low surface energy compound. The resulting asymmetric free-standing film with one surface being superhydrophobic while the other is hydrophilic after detachment from the substrate can undergo reversible bending/unbending shape transitions when the environmental humidity is changed. The bending/unbending movement of the free-standing film can be ascribed to the different responses of these two surfaces to humidity.  相似文献   

6.
Superhydrophobic porous membranes with interconnected open structures for effective treatment oily wastewater have gradually drawn researchers’ attentions owing to frequent occurrence of organics leakage accidents. In this paper, we successfully fabricated superhydrophobic flower-like Cu3(PO4)2·2H2O nanosheets on copper mesh surface via in-situ growth strategy and silane coupling agent (A151) hydrophobic modification. Specifically speaking, commercial copper mesh served as substrate and Cu could react with (NH4)2S2O8 and Na2HPO4, forming flower-like micro-nanostructure. As-synthesized materials were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). In addition, chemical, mechanical stability and durability of as-prepared materials were also investigated under different condition. The relevant experiment results demonstrated that flower-like Cu3(PO4)2·2H2O nanosheets successfully grew on copper mesh surface, resulting in the formation of rough structure. Modified copper mesh showed superhydrophobic and superoleophilic properties simultaneously with water contact angle (CA) of 151.24° and oil contact angle of 0°, respectively. The as-prepared materials could be used to separate oily wastewater with high separation efficiency (above 95.0%). The mechanism of oil–water separation was investigated in detail based on positive and negative capillary effect. High separation efficiency, excellent stability and durability of superhydrophobic copper mesh make it one of best promising separation candidates for wastewater treatment.  相似文献   

7.
分别以过硫酸钾、 过硫酸铵及氨水为氧化剂, 在铜表面制得纳米结构, 并用十七氟癸基三乙氧基硅烷(FAS-17)进一步氟化处理, 获得了差异化超疏水表面. 比较了不同氧化剂对反应结果的影响, 并分析了氧化反应的历程. 实验结果表明, Cu首先被O2氧化成CuO超薄层, 然后水解变成Cu(OH)2, 并进一步被OH-或NH4OH络合成蓝色溶液. 不同形貌纳米结构是Cu(OH)2在饱和析出过程中沿固定晶面堆砌的结果. 最后对不同纳米结构超疏水表面的耐水蒸气冷凝情况及微观机理进行了分析, 证实只有较密、 较垂直的纳米针结构表面才耐水蒸气冷凝, 即冷凝水滴在其上出现快速自迁移现象.  相似文献   

8.
超疏水低粘着铜表面制备及其防覆冰性能   总被引:2,自引:0,他引:2  
用喷砂处理在铜片表面形成微米级丘陵状凹坑,再用表面氧化处理在铜片表面制备菊花花瓣状CuO纳米片.通过喷砂-表面氧化处理在铜片表面成功构建了微米-纳米复合结构,这种表面氟化后与水滴的接触角高达161°,滚动角低至1°,显示出优异的超疏水性和很低的粘着性.低温下,这种表面与水滴间的热量交换较小,水滴不易凝结,有效地提高了抗结霜性.抗结霜性良好的超疏水铜有望在热交换器或低温运行设备等领域获得应用,这种简便的超疏水铜表面的制备方法也给其它工程材料超疏水表面的工业化制备提供了一个思路.  相似文献   

9.
A templateless, surfactantless, electrochemical approach is proposed to directly fabricate hierarchical flowerlike gold microstructures (HFGMs) on an indium tin oxide (ITO) substrate. The as-prepared HFGMs have been characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and cyclic voltammetry. The HFGMs prepared by simple square wave voltammetry technique exhibit flowerlike microstructures and are built with many staggered nanosheets as building blocks. The diameter and density of the HFGMs can be easily controlled via simply controlling the repetitive run times of square wave voltammetry. Moreover, after further chemisorption of a self-assembled monolayer of n-dodecanethiol, the as-prepared compact surface becomes superhydrophobic with a contact angle as high as 154°.  相似文献   

10.
A low-cost method was used to fabricate superhydrophobic coatings on a macroscopic model ship and the drag-reducing effect was investigated at both low and high speed. Hierarchical structures of the superhydrophobic copper coatings were characterized by means of scanning electron microscopy(SEM) and X-ray diffraction(XRD). Drag coefficient tests on surfaces with different wettability(superhydrophilic, hydrophilic, hydrophobic and superhydrophobic surfaces) showed that the as-prepared superhydrophobic surface exhibited a high remarkable drag reduction of 81% at a low speed of 1 mm/s. In the drag-reducing tests with model ship, the superhydrophobic coatings also exhibited around 16% drag reduction at a velocity of 0.3 m/s.  相似文献   

11.
A templateless, surfactantless, electrochemical route is proposed to directly fabricate hierarchical spherical cupreous microstructures (HSCMs) on an indium tin oxide (ITO) substrate. The as-prepared HSCMs have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The HSCMs prepared by simple potentiostatic technique exhibit hierarchical spherical microstructures with higher roughness. After further chemisorption of a self-assembled monolayer of n-dodecanethiol, the as-prepared compact surface becomes superhydrophobic with a contact angle as high as 152°.  相似文献   

12.
In this study, a step-by-step method for the synthesis of platinum nanoparticles and copper(I) complex supported on mesoporous silica hollow spheres (Pt-MSHSs-Cu) is introduced. Scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and elemental and thermogravimetric analyses were applied for characterization of the surface, structure, size, phase composition, and morphology of the synthesized materials. The characterized material, Pt-MSHSs-Cu, was used as an efficient and heterogeneous catalyst in the Sonogashira coupling reaction under different reaction conditions. In comparison with MSHSs, Cu(I)-functionalized MSHSs (MSHSs-Cu), and Pt-MSHSs samples, the Pt-MSHSs-Cu catalyst exhibited significantly increased catalytic performance with 91.50% yield. Therefore, the results obtained suggested a synergistic effect derived from platinum nanoparticles, MSHSs substrate, and copper(I) complex, which enhanced the rate of the Sonogashira coupling reaction.  相似文献   

13.
Superhydrophobic surface was prepared on the zinc substrate by chemical solution method via immersing clean pure zinc substrate into a water solution of zinc nitrate hexahydrate[Zn(NO3)2·6H2O] and hexamethylenetetraamine( C6H12N4) at 95 ℃ in water bath for 1.5 h, then modified with 18 alkanethiol. The best resulting surface shows superhydrophobic properties with a water contact angle of about 158° and a low water roll-off angle of around 3°. The prepared samples were characterized by powder X-ray diffraction(XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy(EDX), transmission electron microscopy(TEM), and scanning electron microscopy(SEM). SEM images of the films show that the resulting surface exhibits flower-shaped micro- and nano-structure. The surfaces of the prepared films were composed of ZnO nanorods which were wurtzite structure. The special flower-like micro- and nano-structure along with the low surface energy leads to the surface superhydrophobicity.  相似文献   

14.
A stable superhydrophobic surface of stearic acid grafted zinc was fabricated with two steps, that is, the zinc surface was firstly treated with glow discharge electrolysis plasma (GDEP) and then followed by a grafted reaction of stearic acid onto the treated zinc surface. Results indicated that the wettability of zinc substrate changed from superhydrophily to superhyphodrobicity with a water contact angle (CA) up to 158° and a water sliding angle (SA) less than 5°. The surface morphology and composition were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively.   相似文献   

15.
The spontaneous reaction between microrods of an organic semiconductor molecule, copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with [AuBr(4)](-) ions in an aqueous environment is reported. The reaction is found to be redox in nature which proceeds via a complex galvanic replacement mechanism, wherein the surface of the CuTCNQ microrods is replaced with metallic gold nanoparticles. Unlike previous reactions reported in acetonitrile, the galvanic replacement reaction in aqueous solution proceeds via an entirely different reaction mechanism, wherein a cyclical reaction mechanism involving continuous regeneration of CuTCNQ consumed during the galvanic replacement reaction occurs in parallel with the galvanic replacement reaction. This results in the driving force of the galvanic replacement reaction in aqueous medium being largely dependent on the availability of [AuBr(4)](-) ions during the reaction. Therefore, this study highlights the importance of the choice of an appropriate solvent during galvanic replacement reactions, which can significantly impact upon the reaction mechanism. The reaction progress with respect to different gold salt concentration was monitored using Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were also investigated for their potential photocatalytic properties, wherein the destruction of the organic dye, Congo red, in a simulated solar light environment was found to be largely dependent on the degree of gold nanoparticle surface coverage. The approach reported here opens up new possibilities of decorating metal-organic charge transfer complexes with a host of metals, leading to potentially novel applications in catalysis and sensing.  相似文献   

16.
Silicon/carbon microrods are co-deposited on copper substrate and graphite spheres surface using dimethyl dichlorosilance as carbon and silicon precursor. The obtained composites are characterized by X-ray diffraction and scanning electron microscopy. The experimental results show that silicon/carbon microrods deposited on the copper substrate, whose diameter is about 500 nm, are accumulated into sisallike morphology, those deposited on the graphite spheres surface form hedgehog-like feature, whose diameter is about 200 nm and whose top is like cauliflower. When current density of 50 mA/g is applied, charge capacity of silicon/carbon microrods is 1492 mA h/g (deposited on copper substrate) and 693 mA h/g (deposited on the graphite spheres surface). Moreover, silicon/carbon microrods deposited on the graphite spehres and copper substrate respectively deliver the capacity of 592, 985 mA h/g, and display no capacity decay at all after the 20 cycles, when cycled under current density of 500 mA/g.  相似文献   

17.
Herein, we present a simple, efficient, and economical approach for the preparation of superhydrophobic gold film embedded on polydimethylsiloxane (PDMS) sheets without the requirement of surface pretreatment. The reduction reaction between chloroauric acid (HAuCl4) and sodium formate (HCOONa) at room temperature was performed to generate the aggregated gold microstructures on a PDMS sheet without chemical residuals. Superhydrophobic property was achieved when deposition time was reached to 2 h with water contact angle >160° and low contact angle hysteresis (H = 1.93°). Systematic investigations of the size, morphology, and mechanism of the generated gold films are presented. The generated gold film contains two different layers involving uniform spherical gold particles attached to the PDMS surface with the complex hierarchical structures on top. The complex structures play an important role in the superhydrophobic property, as they strongly promote the roughness to the PDMS surface. The durability of the fabricated gold film was elucidated by dropping ~7,200 waterdrops and external physical forces (e.g. stretch, bend, and twist). The main structures and their superhydrophobic properties have not disoriented after the tests. Moreover, the surface of the gold film demonstrated the potential applications as magnetical manipulation of droplets and a robust Surface enhanced Raman spectroscopy (SERS substrate).  相似文献   

18.
Compact and uniform superhydrophobic films were prepared on copper substrates using one‐step solution‐immersion process, and the appropriate preparation conditions were selected for mixed solutions. SEM shows that the hybrid film of 1‐dodecanethiol and tetradecanoic acid on copper substrate is more compact with the contact angle of 160°. The electrochemical impedance spectroscopy and polarization test demonstrate that the anti‐corrosion property of surface‐modified copper substrate is greatly improved, especially for the hybrid film. Moreover, the competitive adsorption process and adsorptive geometry of hybrid film were well explained based on the results of quantum chemistry calculations, SEM, and energy dispersive X‐ray analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The surface structure of Cu(100) modified by chloride and iodide has been studied in an electrochemical environment by means of in-situ scanning tunneling microscopy in combination with in-situ surface X-ray diffraction with a particular focus on adsorbate and potential dependent surface relaxation phenomena. For positive potentials close to the on-set of the copper dissolution reaction, the X-ray data disclose an extraordinarily large Cu-Cl bond length of 2.61 A for the c(2 x 2)-Cl phase. This finding points to a largely ionic character of the Cu-Cl interaction at the Cu(100) surface, with chloride particles likely to retain their full charge upon adsorption. Together with the positive surface charging at these high potentials, this ionic Cu-Cl bond drives the observed 2.2% outward relaxation between the first two copper layers. These results indicate that the bond between the first and the second copper layer is significantly weakened which appears as the crucial prerequisite for the high surface mobility of copper-chloride species under electrochemical annealing conditions at these high potentials. With 2.51 A the Cu-I bond is 4% shorter than the Cu-Cl bond implying that the nature of the Cu-I bond is mainly covalent. Accordingly, we observe a significant inward relaxation of the top Cu layers upon substituting chloride by iodide at the same electrode potential, which suggests that the iodide adsorption involves charge transfer from the halide to the copper substrate.  相似文献   

20.
A simple technique was developed for the fabrication of a superhydrophobic surface on the aluminum alloy sheets. Different hierarchical structures(Ag, Co, Ni and Zn) were formed on the aluminum surface by the galvanic replacement reactions. After the chemical modification of them with fluorination, the wettability of the surfaces was changed from superhydrophilicity to superhydrophobicity. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and water contact angle measurement were performed to characterize the morphological characteristic, chemical composition and superhydrophobicity of the surfaces. The as-prepared superhydrophobic surfaces showed a water contact angle as high as ca.160° and sliding angle as low as ca.3°. We hope the method to produce superhydrophobic surface can be used in many fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号