首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 612 毫秒
1.
We report on a search for new resonant states in the process gamma gamma --> DD. A candidate C-even charmonium state is observed in the vicinity of 3.93 GeV/c2. The production rate and the angular distribution in the gamma gamma center-of-mass frame suggest that this state is the previously unobserved chi(c2)', the 2(3)P2 charmonium state.  相似文献   

2.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

3.
Applying a constant voltage to superconducting nanowires we find that its I-V characteristic exhibits an unusual S behavior. This behavior is the direct consequence of the dynamics of the superconducting condensate and of the existence of two different critical currents: j(c2) at which the pure superconducting state becomes unstable and j(c1)相似文献   

4.
The application of χ state are investigated in remote state preparation(RSP). By constructing useful measurement bases with the aid of Hurwitz matrix equation, we propose several RSP schemes of arbitrary two- and three-qubit states via the χ state as the entangled resource. It is shown that the original state can be successfully prepared with the probability100% and 50% for real coefficients and complex coefficients, respectively. For the latter case, the special ensembles with unit success probability are discussed by the permutation group. It is worth mentioning that the novel measurement bases have no restrictions on the coefficients of the prepared state, which means that the proposed schemes are more applicable.  相似文献   

5.
We study the correlated spontaneous emission from a dense spherical cloud of N atoms uniformly excited by absorption of a single photon. We find that the decay of such a state depends on the relation between an effective Rabi frequency Omega proportional square root N and the time of photon flight through the cloud R/c. If OmegaR/c<1 the state exponentially decays with rate Omega(2)R/c and the state lifetime is greater than R/c. In the opposite limit OmegaR/c>1, the coupled atom-radiation system oscillates between the collective Dicke state (with no photons) and the atomic ground state (with one photon) with frequency Omega while decaying at a rate c/R.  相似文献   

6.
Influence of Noises on Remote State Preparation Using GHZ State   总被引:1,自引:0,他引:1  
Using a quantum channel consisting of a GHZ state exposed to noisy environment, we investigate how to remotely prepare an entangled state and a qubit state, respectively. By solving the master equation in the Lindblad form, the influence of the various types of noises on the GHZ state is first discussed. Then we use the fidelity to describe how close the remotely prepared state and the initial state are. Our results show that the fidelity is a function of the decoherence rates and the angles of the initial state. It is found that for each of the two RSP schemes, the influence of the noise acting simultaneously in x, y, and z directions on the average fidelity is the strongest while the influence of the noise acting in x or z direction on the average fidelity is relatively weaker.  相似文献   

7.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

8.
We present a scheme for probabilistic remote preparation of a tripartite qutrit entangled state with a partial tripartite qutrit entangled state and a partial bipartite qutrit entangled state as the quantum channel. It is found that a bipartite qutrit orthogonal projective measurement, an auxiliary qutrit particle, and the corresponding unitary transformation are required. A scheme for probabilistic remote preparation of a tripartite qudit equatorial entangled state by using a partial tripartite qudit entangled state and a partial bipartite qudit entangled state as the quantum channel is also proposed. We calculate the successful total probability and the total classical communication cost required in the RSP process, respectively.  相似文献   

9.
Based on the Husimi operator in pure state form introduced by Fan et al., which is a squeezed coherent state projector, and the technique of integration within an ordered product (IWOP) of operators, as well as the entangled state representations, we obtain the Husimi functions of the excited squeezed vacuum states (ESVS) and two marginal distributions of the Husimi functions of the ESVS.  相似文献   

10.
An experimentally feasible scheme for generalized quantum state sharing of an arbitrary unknown single- qubit state in cavity QED is presented. Using a generalized Greenberger-Horne-Zeilinger (GHZ) state as the quantum channel among the three parties, the quantum information (i.e. the single-qubit state) from the sender can be split in such a way that the information can be recovered if and only if both receivers collaborate. Moreover, the scheme is insensitive to both the effects of thermal field and cavity decay.  相似文献   

11.
We study the optical field's quadrature excitation state X m |0 , where X = (a+a+)/ √2 is the quadrature operator. We find it is ascribed to the Hermite-polynomial excitation state. For the first time, we determine this state's normalization constant which turns out to be a Laguerre polynomial. This is due to the integration method within the ordered product of operators (IWOP). The normalization for the two-mode quadrature excitation state is also completed by virtue of the entangled state representation.  相似文献   

12.
We show that the Susskind-Glogower phase state is a limiting case of a kind of SU(1,1) coherent states. By analogy, based on the bipartite entangled state representation (ESR) we demonstrate that an appropriate SU(1,1) coherent state composed of the two-mode unitary phase operator e^i also leads to a new phase state in two-mode Fock space, e^i is diagonalized in the ESR.  相似文献   

13.
In this paper, two-mode displaced excited squeezed vacuum states (TDESVS) are constructed and their normalization and completeness are investigated. Using the entangled state representation and Weyl ordering form of the Wigner operator, the Wigner functions of TDESVS are obtained and the variations of Wigner functions with the parameters m, n and r are investigated. Besides, two marginal distributions of Wigner functions of TDESVS are obtained, which exhibit some entangled properties of the two-particle's system in TDESVS.  相似文献   

14.
Filled and empty state scanning tunnelling microscopy images of the sputtered and annealed InSb(001) surface are presented. The sputter-anneal preparation generates a surface with two distinct phases. The dominant phase possesses a unit cell with true c(8 × 2) symmetry, whereas the other phase is attributed to an asymmetric 1 × 3 reconstruction. The presence of a c(8 × 2) unit cell in filled state images is in contrast to previous reports, which identified only a 4 × 1 unit cell. The true c(8 × 2) symmetry further indicates, the available structural model is used as a guide, that the current interpretation of features in filled state images is incorrect. This result may necessitate a reevaluation of the structural model for the InSb(001)-c(8 × 2) surface.  相似文献   

15.
We investigate the exact solutions of one-dimensional (1D) time-independent Gross-Pitaevskii equation (GPE), which governs a Bose-Einstein condensate (BEC) in the magnetic waveguide with a square-Sech potential. Both the bound state and transmission state are found and the corresponding spatial configurations and transport properties of BEC are analyzed. It is shown that the well-known absolute transmission of the linear system can occur in the considered nonlinear system.  相似文献   

16.
Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j. As important applications of the wave function, the Wigner function of the SACS and its marginal distribution are obtained and the eigenproblems of some Hamiltonians for the generalized angular momentum system are solved.  相似文献   

17.
In canonical quantum gravity asymptotically trivial diffeomorphisms not deformable to the identity can act nontrivially on the quantum state space. We show that for many 3-manifolds, the inequivalent diffeomorphisms comprise coverings in SU(2) of crystallographic groups. When the diffeomorphism R associated with 2π-rotation is nontrivial, state vectors can have half-integral angular momentum; we list all 3-manifolds with R trivial.  相似文献   

18.
We report a systematic high-resolution angle-resolved photoemission spectroscopy on high-T(c) superconductors Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4) (n=1-3) to study the origin of many-body interactions responsible for superconductivity. For n=2 and 3, a sudden change in the energy dispersion, so called "kink", becomes pronounced on approaching (pi,0) in the superconducting state, while a kink appears only around the nodal direction in the normal state. For n=1, the kink shows no significant temperature dependence even across T(c). This could suggest that the coupling of electrons with Q=(pi,pi) magnetic mode is dominant in the superconducting state for multilayered cuprates, while the interactions at the normal state and that of single-layered cuprates have a different origin.  相似文献   

19.
We propose a scheme to generate atomic cluster states of arbitrary configuration in the cavity quantum electrodynamics (QED) system. The process is achieved via adiabatic evolution of dark states, which only requires adiabatically increasing or decreasing Rabi frequencies of laser. Thus it allows the robust implementation of entanglement against certain types of errors. Our scheme is relatively decoherence-free in the sense that excited atomic states are never populated and excited cavity photon states can be made negligible in certain conditions.  相似文献   

20.
Taking into account the interaction between electrons and phonons, in the case without-rotating-wave aproximation, we study the entangling property between the mesoscopic circuit and environment at coherent state or equilibrium state. The result indicates that, in long time limit t →∞, the averages of charge and current in the circuit only depend on the average of the system at the initial state when the environment is initially at thermal equilibrimn. However, when the environment is initially at coherent state, the average of charge and current in the circuit is determined by the specific coherent state ensemble. Generally speaking, the entanglement between the circuit and environment will lead to the quantum state purity declining of the circuit, then the circuit emerges decoherent phenomenon, and so a mixed sta.te appears. Purity changes are related to the initial quantum state of environment and circuit. With the further evolution of time, coherence will be gradually restored, but cannot return to 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号