首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

2.
The use of olaquindox (OLA) as an additive in animal feedstuffs has been prohibited in the European Union and many other countries. In this study, a highly sensitive and specific indirect competitive enzyme-linked immunosorbent assay (ELISA) for determination of OLA in animal feed samples was developed. OLA was activated by NN-carbonyldiimidazole and coupled with bovine serum albumin (BSA) and ovalbumin (OVA). It was found that the sensitivity and specificity of the two antisera were very similar, with the IC50 values of 16 ng mL−1 and 19 ng mL−1, respectively. Cross-reactivity was less than 35% for four structurally related compounds and no recognition of five other antibiotics was observed. The better antiserum I was selected for further experiments, for example testing stability, solvent effect, accuracy, and precision. The IC50 value for eight standard curves was in the range 12–18 ng mL−1 and the LOD at a signal-to-noise ratio of 3 (S/N = 3) was 0.31 ± 0.11 ng mL−1. The ELISA tolerated 5% methanol without significant influence on IC50 value. The recoveries of spiked OLA in five different animal feed types including auxin, pig complex feed, fish complex feed, broiler concentrated feed, and pig premix feed were in the range 88.3–119.0% and the intra-assay relative standard deviation (RSD) was within 4.7–33.5% (n = 3). The ELISA for unspiked feed samples was confirmed by high-performance liquid chromatography (HPLC), with a high correlation coefficient of 0.9862 (n = 5). The proposed ELISA could be a feasible quantitative/screening method for OLA analysis in feed samples with the properties of high sensitivity, specificity, simplicity of sample pretreatment, high sample throughput, and low expense. Figure Polyclonal antibody based ELISA for detection of olaquindox  相似文献   

3.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

4.
In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L−1 of NaOH (372 ± 12 and 355 ± 37 mg gglucan−1) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15–30 min) and microwave power (600–900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU gCAB-M−1) increased glucose concentration to 15 g L−1. The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L−1 and 1.41 g L−1 h−1, respectively.  相似文献   

5.
Radix Scrophulariae (Xuanshen) is one of the famous Chinese herbal medicines widely used to treat rheumatism, tussis, pharyngalgia, arthritis, constipation, and conjunctival congestion. Harpagoside and cinnamic acid are the main bioactive components of Xuanshen. The purpose of this study was to develop an HPLC–UV method for simultaneous determination of harpagoside and cinnamic acid in rat plasma and investigate pharmacokinetic parameters of harpagoside and cinnamic acid after oral administration of Xuanshen extract (760 mg kg−1). After addition of syringin as internal standard, the analytes were isolated from plasma by liquid–liquid extraction. Separation was achieved on a Kromasil C18 column, and detection was by UV absorption at 272 nm. The described assay was validated in terms of linearity, accuracy, precision, recovery, and limit of quantification according to the FDA validation guidelines. Calibration curves for both analytes were linear with the coefficient of variation (r) for both was greater than 0.999. Accuracy for harpagoside and cinnamic acid ranged from 100.7–103.5% and 96.9–102.9%, respectively, and precision for both analytes were less than 8.5%. The main pharmacokinetic parameters found for harpagoside and cinnamic acid after oral infusion of Xuanshen extract were as follows: C max 1488.7 ± 205.9 and 556.8 ± 94.2 ng mL−1, T max 2.09 ± 0.31 and (1.48 ± 0.14 h, AUC0–24 10336.4 ± 1426.8 and 3653.1 ± 456.4 ng h mL−1, 11276.8 ± 1321.4 and 3704.5 ± 398.8 ng h mL−1, and t 1/2 4.9 ± 1.3 and 2.5 ± 0.9 h, respectively. These results indicated that the proposed method is simple, selective, and feasible for pharmacokinetic study of Radix Scrophulariae extract in rats. Figure Radix Scrophulariae  相似文献   

6.
We have developed a circular-dichroism thermal lens microscope for UV wavelengths (UV-CD-TLM), for the first time, to realize sensitive chiral analysis on a microchip. Quasi-continuous-wave phase modulation of a pulsed UV laser was used to generate left-circularly polarized light and right-circularly polarized light and to detect the generated TL signal amplitude and phase with a lock-in amplifier. The amplitude and phase were used to determine the concentration and chirality, respectively, of a sample. The basic principle of UV-CD-TLM for chiral analysis on a microchip was verified by measuring aqueous solutions of optically active camphorsulfonic acids (CSA). Lower limits of detection (LOD) were calculated at S/= 2 and were 8.7 × 10−4 mol L−1A = 5.2 × 10−6 Abs.) for (+)-CSA and 8.4 × 10−4 mol L−1A = 5.0 × 10−6 Abs.) for (−)-CSA. In terms of number of molecules, LODs for UV-CD-TLM were calculated to be 8.7 fmol and 8.4 fmol, respectively. This is at least three orders of magnitude lower than previously obtained. The applicability of UV-CD-TLM for chiral analysis on a microchip was verified. Figure Sensitive chiral analysis by thermal lens microscope (TLM)  相似文献   

7.
Relativistic energy-consistent small-core lanthanide pseudopotentials of the Stuttgart–Bonn variety and extended valence basis sets have been used for the investigation of the dimers La2 and Lu2. It was found that the ground states for La2 and Lu2 are most likely 1 g + g 2π u 4) and 3 g (4f 144f 14σ g 2σ u 2πu 2), respectively. The molecular constants including error bars were derived from multireference configuration interaction as well as coupled-cluster calculations, taking into account corrections for atomic spin–orbit splitting as well as possible basis set superposition errors. The theoretical values for La2 (R e=2.70±0.03 ?, D e=2.31±0.13 eV, ωe=186±13 cm−1) show good agreement with the experimental binding energy (D e=2.52±0.22 eV), but the experimental vibrational constant in an Ar matrix (ωe=236±0.8 cm−1) is significantly higher. For Lu2 the theoretical values (R e=3.07±0.03 ?, D e=1.40±0.12 eV, ωe=123±1 cm−1) are in overall excellent agreement with experimental data (D e=1.43±0.34 eV, ωe=122± 1 cm−1). The electronic structures of La2 and Lu2 are compared to those other lanthanide dimers and trends in the series are discussed. Received: 25 March 2002 / Accepted: 2 June 2002 / Published online: 21 August 2002  相似文献   

8.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) was developed in plate to detect three sulfonamide residues (sulfamerazine (SMR), sulfadimetoxine (SDM), and sulfadiazine (SDZ)) in gilthead sea bream (Sparus aurata) samples. Different extraction methodologies—using methanol/water 1:1 (v/v) + ethylene diamine tetraacetic acid (EDTA) 0.5% (m/v), acetonitrile, phosphate-buffered saline (PBS) 10 mmol L−1 pH 7 and acetate buffer 100 mmol L−1 pH 5—and cleanup steps, based on solid-phase extraction (C18, SCX, Si) or liquid extraction with hexane, were assayed. As optimum, a fast and simple method using acetonitrile was selected to extract the sulfonamide residues from the edible muscle of fish. Due to matrix effects, a standard addition calibration curve in fish extract is necessary for quantification purposes. Sulfonamide-free samples were spiked at different concentration levels (between 30 and 90 ng g−1, 5–15 ng mL−1 in plate) and average recoveries (n = 8), ranging from 71% to 95%, 65% to 79%, and 72% to 95%, were obtained for SMR, SDM, and SDZ, respectively. The assay detection limits for these antibiotics were lower than 100 μg kg−1 (maximum residue level established by the European Union). The accuracy was evaluated by spiking blank fish extracts at different concentrations (10–40 ng mL−1, 5–20 ng mL−1 in plate), and the relative errors ranged between ±20%. Finally, in order to confirm the utility of the developed ELISA as a screening methodology, fish samples from different supermarkets were analyzed, and results were compared with those obtained by a validated high-performance liquid chromatography (HPLC) method. The correlation between the results obtained by both ELISA and HPLC methods is satisfactory.   相似文献   

9.
A multianalyte lateral-flow immunochromatographic technique using colloidal gold-labeled polyclonal antibodies was developed for the rapid simultaneous detection of clenbuterol and ractopamine. The assay procedure could be accomplished within 5 min, and the results of this qualitative one-step assay were evaluated visually according to whether test lines appeared or not. When applied to the swine urines, the detection limit and the half maximal inhibitory concentration (IC50) of the test strip under an optical density scanner were calculated to be 0.1 ± 0.01 ng mL−1 and 0.1 ± 0.01 ng mL−1, 0.56 ± 0.08 ng mL−1, and 0.71 ± 0.06 ng mL−1, respectively, the cut-off levels with the naked eye of 1 ng mL−1 and 1 ng mL−1 for clenbuterol and ractopamine were observed. Parallel analysis of swine urine samples with clenbuterol and ractopamine showed comparable results obtained from the multianalyte lateral-flow test strip and GC-MS. Therefore, the described multianalyte lateral-flow test strip can be used as a reliable, rapid, and cost-effective on-site screening technique for the simultaneous determination of clenbuterol and ractopamine residues in swine urine.   相似文献   

10.
The strontium content of serum, bone, marrow, and teeth was determined by inductively-coupled plasma mass spectrometry (ICP–MS). Significant correlations were obtained after the data were subjected to quality assurance (QA) performed according to validated procedures. After four weeks of treatment with strontium malonate, strontium levels increased from 76 ± 9 μg g−1 in placebo-treated dogs to levels of 7.2 ± 1.7 mg g−1, 9.5 ± 2.7 mg g−1, and 9.8 ± 2.7 mg g−1 in groups treated with 300, 1000, and 3000 mg kg−1 day−1, respectively. Strontium induced a highly significant increase in the bone formation marker, bone-specific alkaline phosphatase (BSAP), and an excellent correlation was found with the bone-strontium content. In females, the placebo-treated group showed a decrease in BSAP of 53%, whereas the three strontium malonate-treated groups showed an increase of 60, 276, and 278% for the groups treated with 300, 1000, and 3000 mg kg−1 day−1, respectively. For males the corresponding values were −44%, +142%, +194%, and +247% increases in BSAP in the placebo, 300, 1000, and 3000 mg kg−1 day−1 groups respectively.  相似文献   

11.
A three-layer microfluidic device was developed that combined perfusion of cultured cells with on-line chemical analysis for near real-time monitoring of cellular secretions. Two layers were reversibly sealed to form a cell chamber that allowed cells grown on coverslips to be loaded directly into the chip. The outlet of the chamber was in fluidic contact with a third layer that was permanently bonded. Perfusate from the cell chamber flowed into this third layer where a fluorescence enzyme assay for non-esterified fatty acid (NEFA) was performed on-line. The device was used to monitor efflux of NEFAs from ∼6,200 cultured adipocytes with 83 s temporal resolution. Perfusion of murine 3T3-L1 cultured adipocytes resulted in an average basal concentration of 24.2 ± 2.4 μM NEFA (SEM, n = 6) detected in the effluent corresponding to 3.31 × 10−5 nmol cell−1 min−1. Upon pharmacological treatment with a β-adrenergic agonist to stimulate lipolysis, a 6.9 ± 0.7-fold (SEM, n = 6) sustained increase in NEFA secretion was observed. This multilayer device provides a versatile platform that could be adapted for use with other cell types to study corresponding cellular secretions in near real-time.  相似文献   

12.
The redox characteristics of the drug domperidone at a glassy-carbon electrode (GCE) in aqueous media were critically investigated by differential-pulse voltammetry (DPV) and cyclic voltammetry (CV). In Britton–Robinson (BR) buffer of pH 2.6–10.3, an irreversible and diffusion-controlled oxidation wave was developed. The dependence of the CV response of the developed anodic peak on the sweep rate (ν) and on depolizer concentration was typical of an electrode-coupled chemical reaction mechanism (EC) in which an irreversible first-order reaction is interposed between the charges. The values of the electron-transfer coefficient (α) involved in the rate-determining step calculated from the linear plots of E p,a against ln (ν) in the pH range investigated were in the range 0.64 ± 0.05 confirming the irreversible nature of the oxidation peak. In BR buffer of pH 7.6–8.4, a well defined oxidation wave was developed and the plot of peak current height of the DPV against domperidone concentration at this peak potential was linear in the range 5.20 × 10−6 to 2.40 × 10−5 mol L−1 with lower limits of detection (LOD) and quantitation (LOQ) of 6.1 × 10−7 and 9.1 × 10−7 mol L−1, respectively. A relative standard deviation of 2.39% (n = 5) was obtained for 8.5 × 10−6 mol L−1 of the drug. These DPV procedures were successfully used for analysis of domperidone in the pure form (98.2 ± 3.1%), dosage form (98.35 ± 2.9%), and in tap (97.0 ± 3.6%) and wastewater (95.0 ± 2.9%) samples. The method was validated by comparison with standard titrimetric and HPLC methods. Acceptable error of less than 3.3 % was also achieved. Figure In aqueous media at pH 7.6- 8.4, the DPV and cyclic voltammetry of the drug domperidone (I) at GCE showed an irreversible and diffusion controlled oxidation wave. The values of the electron transfer coefficient (α) involved in the rate determining step were found in the range 0.64± 0.05 confirming the irreversible nature of the peak. The analysis of the drug in pure form and in wastewater samples was successfully achieved  相似文献   

13.
A piezoelectric quartz crystal (PQC) sensor based on a molecularly imprinted polymer (MIP) has been developed for enantioselective and quantitative analysis of d-(+)-methamphetamine (d(+)-MA). The sensor was produced by bulk polymerization and the resulting MIP was then coated on the gold electrode of an AT-cut quartz crystal. Conditions such as volume of polymer coating, curing time, type of PQC, baseline solvent, pH, and buffer type were found to affect the sensor response and were therefore optimized. The PQC-MIP gave a stable response to different concentrations of d(+)-MA standard solutions (response time = 10 to 100 s) with good repeatability (RSD = 0.03 to 3.09%; n = 3), good reproducibility (RSD = 3.55%; n = 5), and good reversibility (RSD = 0.36%; n = 3). The linear range of the sensor covered five orders of magnitude of analyte concentration, ranging from 10−5 to 10−1 μg mL−1, and the limit of detection was calculated as 11.9 pg d(+)-MA mL−1 . The sensor had a highly enantioselective response to d(+)-MA compared with its response to l(−)-MA, racemic MA, and phentermine. The developed sensor was validated by applying it to human urine samples from drug-free individuals spiked with standard d(+)-MA and from a confirmed MA user. Use of the standard addition method (SAM) and samples spiked with d(+)-MA at levels ranging from 1 × 10−3 to 1 × 10−2 μg mL−1 showed recovery was good (95.3 to 110.9%).  相似文献   

14.
A multicommutation-based flow system with photometric detection was developed, employing an analytical microsystem constructed with low temperature co-fired ceramics (LTCC) technology, a solid-phase reactor containing particles of Canavalia ensiformis DC (urease source) immobilized with glutaraldehyde, and a mini-photometer coupled directly to the microsystem which monolithically integrates a continuous flow cell. The determination of urea in milk was based on the hydrolysis of urea in the solid-phase reactor and the ammonium ions produced were monitored using the Berthelot reaction. The analytical curve was linear in the urea concentration range from 1.0 × 10−4 to 5.0 × 10−3 mol L−1 with a limit of detection of 8.0 × 10−6 mol L−1. The relative standard deviation (RSD) for a 2.0 × 10−3 mol L−1 urea solution was lower than 0.4% (n = 10) and the sample throughput was 13 h−1. To check the reproducibility of the flow system, calibration curves were obtained with freshly prepared solutions on different days and the RSD obtained was 4.7% (n = 6). Accuracy was assessed by comparing the results of the proposed method with those from the official procedure and the data are in close agreement, at a 95% confidence level.  相似文献   

15.
An approach for rapid quantitation of 5-hydroxymethylfurfural (HMF) in honey using planar chromatography is suggested for the first time. In high-performance thin-layer chromatography (HPTLC) the migration time is approximately 5 min. Detection is performed by absorbance measurement at 290 nm. Polynomial calibration in the matrix over a range of 1:80 showed correlation coefficients, r, of ≥ 0.9997 for peak areas and ≥ 0.9996 for peak heights. Repeatability in the matrix confirmed the suitability of HPTLC–UV for quantitation of HMF in honey. The relative standard deviation (RSD, %, n = 6) of HMF at 10 ng/band was 2.9% (peak height) and 5.2% (peak area); it was 0.6% and 1.0%, respectively, at 100 ng/band. Other possible detection modes, for example fluorescence measurement after post-chromatographic derivatization and mass spectrometric detection, were also evaluated and can coupling can be used as an additional tool when it is necessary to confirm the results of prior quantitation by HPTLC–UV. The confirmation is provided by monitoring the HMF sodium adduct [M + Na]+ at m/z 149 followed by quantitation in TIC or SIM mode. Detection limits for HPTLC–UV, HPTLC–MS (TIC), and HPTLC–MS (SIM) were 0.8 ng/band, 4 ng/band, and 0.9 ng/band, respectively. If 12 μL honey solution was applied to an HPTLC plate, the respective detection limits for HMF in honey corresponded to 0.6 mg kg−1. Thus, the developed method was highly suitable for quantitation of HMF in honey at the strictest regulated level of 15 mg kg−1. Comparison of HPTLC–UV detection with HPTLC–MS showed findings were comparable, with a mean deviation of 5.1 mg kg−1 for quantitation in SIM mode and 6.1 mg kg−1 for quantitation in TIC mode. The mean deviation of the HPTLC method compared with the HPLC method was 0.9 mg kg-1 HMF in honey. Re-evaluation of the same HPTLC plate after one month showed a deviation of 0.5 mg kg−1 HMF in honey. It was demonstrated that the proposed HPTLC method is an effective method for HMF quantitation in honey.   相似文献   

16.
The development and characterization of one rat monoclonal antibody (mAb) for 2,4-dinitroaniline and of two rat mAbs for 2,6-dinitroaniline are described. With the immunization of rats with 2,4,6-trinitrophenyl-glycylglycine–keyhole limpet hemocyanine (KLH) conjugate one mAb (PK 5H6) has been developed and formatted into a competitive enzyme-linked immunosorbent assay (ELISA). This assay no. 1 is very sensitive for 2,4-dinitroaniline with a test midpoint of 0.24 ± 0.06 μg L−1 (n = 19) in 40 mM phosphate-buffered saline (PBS). A second hapten, 3-(4-amino-2,6-dinitrophenyl)propionic acid, which was also conjugated to KLH and used for the immunization of rats, led to two sensitive ELISAs for 2,6-dinitroaniline in 40 mM PBS with test midpoints of 0.61 ± 0.08 μg L−1 (n = 15; mAb DNT4 3C6; assay no. 2) and 0.94 ± 0.29 μg L−1 (n = 17; mAb DNT4 1A7, assay no. 3). Selectivities of all mAbs were checked with more than 20 compounds, including nitroaromatic compounds, 2,6-dinitroaniline pesticides, and other substituted derivatives of aniline. As very noticeable cross-reactivities, all mAbs recognize 2-chloro-4,6-dinitroaniline, 4-chloro-2,6-dinitroaniline and 2-bromo-4,6-dinitroaniline, the last of these being a major metabolite of the azo dye Disperse Blue 79. As first demonstrations of applications, two ELISAs (assays no. 1 and 2) were used for the analysis of 2,4- or 2,6-dinitroaniline in spiked water and soil samples. Recovery data were determined and the majority of these data were in the range of 90–120%. These assays can contribute to a very cost-effective and environmentally friendly immunochemical surveillance monitoring of environmental samples for contaminations with these compounds. To the best of the authors’ knowledge, these are the first antibodies described for 2,4-dinitroaniline and for 2,6-dinitroaniline.  相似文献   

17.
Abstract  Two new coordination polymers, [CoL(bpp)] n (1) and [MnL(bipy)] n ·0.25nH2L·0.5nH2O (2) (H2L = 1,3-adamantanediacetic acid, bpp = 1,3-bis(4-pyridyl)propane, bipy = 4,4′-bipyridine), were synthesized and characterized by single crystal X-ray diffraction, IR spectroscopy, and thermal analysis. Complex 1 is an one-dimensional (1D) chain structure of Co(II) bridged by L2− as well as bpp. Complex 2 consists of a two-dimensional (2D) (3,6)-connected topology layer structure. Variable temperature magnetic susceptibility measurements in the range of 2–300 K reveal the existence of weak antiferromagnetic interactions in two complexes with J = −1.74 cm−1, g = 2.26 for 1 and J = −0.10 cm−1, g = 1.67 for 2. Index abstract  Two mental-organic frameworks, namely [CoL(bpp)] n (1) and [MnL(bipy)] n ·0.25nH2L·0.5nH2O (2) (H2L = 1,3-adamantanediacetic acid, bpp = 1,3-bis(4-pyridyl)propane, bipy = 4,4′-bipyridine), have been synthesized based on 1,3-adamantanediacetic acid and N-donor coligand with metal ions Co(II) and Mn(II). The magnetic measurement of the two polymers reveals typical antiferromagnetism exchange. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
RuO2/Co3O4 thin films with different RuO2 content were successfully prepared on fluorine-doped tin oxide coated glass plate substrates by spray pyrolysis method, and their capacitive behavior was investigated. Electrochemical property was performed by cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectra. The capacitive performance of RuO2/Co3O4 thin films with different RuO2 content corresponded to a contribution from a main pseudocapacitance and an additional electric double-layer capacitance. The specific capacitance of pure Co3O4, 15.5%, 35.6%, and 62.3% RuO2 composites at the current density of 0.2 A g−1 were 394 ± 8, 453 ± 9, 520 ± 10, and 690 ± 14 F g−1, respectively; 62.3% RuO2 composite presented the highest specific capacitance value at various current densities, whereas 35.6% RuO2 composite exhibited not only the largest specific capacitance contribution from RuO2 (C sp RuO2) at the current density of 0.5, 1.0, 1.5, and 2.0 A g−1 but also the highest specific capacitance retention ratio (46.3 ± 2.8%) at the current density ranging from 0.2 to 2.0 A g−1. Electrochemical impedance spectra showed that the contact resistance dropped gradually with the decrease of RuO2 content, and the charge-transfer resistance (R ct) increased gradually with the decrease of RuO2 content.  相似文献   

19.
This paper describes the application of TiO2 nano-particles (anatase form) for the solid-phase extraction of iron from coastal seawater samples. We investigated the adsorption processes by infra-red spectroscopy. We compared in batch and on-(mini)column extraction approaches (0.1 and 0.05 g TiO2 per sample, respectively), combined to external calibration and detection by inductively coupled plasma mass spectrometry at medium mass resolution. Globally, this titania phase was slightly more efficient with seawater than with ultra-pure water, although between pH 2 and pH 7, the Fe retention efficiency progressed more in ultra-pure water than in seawater (6.9 versus 4.8 times improvement). Different reaction schemes are proposed between Fe(III) species and the two main categories of titania sites at pH 2 (adsorption of [FeL x ](3 − x)+ via possibly the mediation of chlorides) and at pH 7 (adsorption of [Fe(OH)2]+ and precipitation of [Fe(OH)3]0). Under optimised conditions, the inlet system was pre-cleaned by pumping 6% HCl for ∼2 h, and the column was conditioned by aspirating ultra-pure water (1.7 g min−1) and 0.05% ammonia (0.6 g min−1) for 1 min. Then 3 g seawater sample was loaded at the same flow rate while being mixed on-line with 0.05% ammonia at 0.6 g min−1 to adjust the pH to 7. The iron retained on the oxide powder was then eluted with 3 g 6% HCl (<0.002% residual salinity in the separated samples). The overall procedural blank was 220 ± 46 (2 s, n = 16) ng Fe kg−1 (the titania was renewed in the column every 20 samples, with 2-min rinsing in between samples with 6% HCl at 1.5 g min−1). The recovery estimated from the Canadian certified reference material CASS-2 was 69.5 ± 7.6% (2 s, n = 4). Typically, the relative combined uncertainty (k = 2) estimated for the measurement of ∼1 μg Fe kg−1 (0.45 μm filtered and acidified to pH 1.5) of seawater was ∼12%. We applied our method to a similar sample, from the coastal region of the North Sea. The agreement well within stated uncertainties of our result with the value obtained independently by isotope dilution mass spectrometry further validated our method.  相似文献   

20.
The present research focused on the development of an immunoassay and an immunochemical sol–gel-based immunoaffinity purification (IAP) method for purification and detection of the non-steroid anti-inflammatory drug (NSAID) indomethacin (IMT). A polyclonal antibody (Ab) for IMT was generated, and two sensitive microplate assays for the detection of IMT were developed (termed OV and HRP formats), based on the enzyme-linked immunosorbent assay (ELISA) method. The limits of detection of the assays were 15 ± 1.25 ng mL−1 (n = 50) and 12 ± 0.17 ng mL−1 (n = 4) for the OVA and HRP formats, respectively. The Abs exhibited slight cross-reactivity with other NSAIDs. The Abs were also used to develop a sol–gel-based IAP method for clean-up and concentration of IMT. Several sol–gel formats with various amounts of antibodies were examined; the best and most reproducible format was at a TMOS:HCl molar ratio of 1:6 in which 120 μL of IMT Abs was entrapped. The binding capacity under these conditions was ca. 100 to 250 ng of IMT with very low non-specific binding (less than 5% of the applied amount). The sol–gel IAP method, combined with solid-phase extraction, successfully eliminated serum interference to a degree that enabled analysis of spiked serum samples by ELISA. The method was also found to be fully compatible with subsequent chemical analytical methods, such as liquid chromatography followed by mass spectrometry. The approaches developed in this study form a basis for analysis of IMT in biological samples in order to monitor their pharmacokinetic properties, and may be further used to study population exposure to IMT, and to monitor the occurrence of IMT contamination in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号