首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
In the present work, a novel flow-injection chemiluminescence method based on CdTe quantum dots (QDs) was developed for the determination of nitrite. Weak chemiluminescence (CL) signals were observed from a CdTe QDs–H2O2 system under basic conditions. The addition of a trace amount of hemoglobin (Hb) caused the CL from the CdTe QDs–H2O2 system to increase substantially. In the presence of nitrite, the ferrous Hb reacted with the nitrate to form ferric Hb and NO. The NO then bound to ferrous Hb to generate iron nitrosyl Hb. As a result, the CL signal from the CdTe QDs–H2O2–Hb system was quenched. Thus, a flow-injection CL analytical system for the determination of trace nitrite was established. Under optimum conditions, there was a good linear relationship between CL intensity and the concentration of nitrite in the range 1.0?×?10?9 to 8.0?×?10?7 mol L?1 (R 2?=?0.9957). The limit of detection for nitrite using this system was 3.0?×?10?10 mol L?1 (S/N?=?3). This method was successfully applied to detect nitrite in water samples.
Figure
The scheme of the mechanism of the CL system  相似文献   

2.
Mixed cationic and anionic surfactants were adsorbed on cadmium sulfide quantum dots (CdS QDs) capped with mercaptoacetic acid. The CdS QDs can be extracted into acetonitrile with 98 % efficiency in a single step. Phase separation only occurs at a molar ratio of 1:1.5 between cationic and anionic surfactants. The surfactant-adsorbed QDs in acetonitrile solution display stronger and more stable photoluminescence than in water solution. The method was applied for determination of silver(I) ion based on its luminescence enhancement of the QDs. Under the optimum conditions, the relative fluorescence intensity is linearly proportional to the concentration of silver(I) ion in the range between 50 pmol L?1and 4 μmol L?1, with a 20 pmol L?1 detection limit. The relative standard deviation was 1.93 % for 9 replicate measurements of a 0.2 μmol L?1 solution of Ag(I).
Figure
?  相似文献   

3.
Water-soluble cadmium telluride quantum dots (CdTe QDs) capped with glutathione (GSH) display chemiluminescence (CL) emission on reaction with hydrogen peroxide (H2O2) in strongly alkaline medium. It is found that the CL is strongly enhanced on addition of formaldehyde in aqueous solution. A flow injection system was developed, and it is shown that there is good linearity between CL intensity and the concentration of formaldehyde in the 0.06–3.0 μg L?1 range. The limit of detection is as low as 10 ng L?1. The method was successfully applied to the determination of formaldehyde in indoor air after adsorption into an aqueous phase. The recoveries for the real samples range from 97 % to 102.5 %, and the relative standard deviation is <3.8 % for intra- and inter-assay precision.
Figure
Formaldehyde enhances the CL resulting from CdTe quantum dots and H2O2, and this effect is exploited in a simple and sensitive FIA method for the determination of formaldehyde.  相似文献   

4.
We have developed a “turn on” model of an electrochemiluminescence (ECL) based assay for lead ions. It is based on the formation of a G-quadruplex from an aptamer labeled with quantum dots (QDs) and placed on an electrode modified with of graphene and gold nanoparticles (AuNPs). A hairpin capture probe was labeled with a thiol group at the 5′-end and with an amino group at the 3′-end. It was then self-assembled on the electrode modified with graphene and AuNPs. In the absence of Pb(II), the amino tag on one end of the hairpin probe is close to the surface of the electrode and therefore unable to interact with the QDs because of steric hindrance. The ECL signal is quite weak in this case. If, however, Pb(II) is added, the stem-loop of the aptamer unfolds to form a G-quadruplex. The amino group at the 3′-end will become exposed and can covalently link to a carboxy group on the surface of the CdTe QDs. This leads to strong ECL. Its intensity increases (“turns on”) with the concentration of Pb(II). Such a “turn-on” method does not suffer from the drawbacks of “turn-off” methods. ECL intensity is linearly related to the concentration of Pb(II) in the 10 p mol·L?1 to 1 n mol·L?1 range, with a 3.8 p mol·L?1 detection limit. The sensor exhibits very low detection limits, good selectivity, satisfying stability, and good repeatability.
Figure
A “turn on” model of ECL method was developed based on G-quadruplex of Graphene/AuNPs of aptamer probe by using quantum dots as label. ECL intensity is increased with the increase of Pb2+ concentration. The responsive ECL intensity was linearly related to the Pb2+ concentration in the range of 1.0?×?10?11?~?1.0?×?10?9 mol·L?1, with a detection limit of 3.82?×?10?12 mol·L?1.  相似文献   

5.
We have fabricated, in a single step, carbon ceramic electrodes modified with a poly(acridine orange) film containing reduced graphene oxide. They display electrocatalytic activity to ascorbic acid (AA) and uric acid (UA) at pH 4.5. The anodic peak potentials of AA and UA are separated by 276 mV so that they can be well resolved in cyclic voltammetry. UA and AA were simultaneously determined in a mixture at working potentials of 170 and 400 mV, respectively. Under optimized conditions, the calibration curves for AA and UA cover the 0.8–5,000 μM and 0.6–900 μM concentration range, respectively, while detection limits are 0.3 μM and 0.2 μM. The electrode was applied to determine AA and UA in urine samples.
Figure
DPV curves of RGO–PAO/CCE in the phosphate buffer solution (pH 4.5) containing 5.0?×?10?5 mol L?1 AA with different concentration of UA (a?→?f: 0, 1, 3, 5, 7, 9?×?10?6 mol L?1)  相似文献   

6.
We have developed a method for the determination of microcystin-leucine-arginine (MC-LR) in water samples that is based on the quenching of the fluorescence of bioconjugates between CdSe/CdS quantum dots (QDs) and the respective antibody after binding of MC-LR. The core-shell CdSe/CdS QDs were modified with 2-mercaptoacetic acid to improve water solubility while their high quantum yields were preserved. Monoclonal MC-LR antibody was then covalently bioconjugated to the QDs. It was found that the fluorescence intensity of the bioconjugates was quenched in the presence of MC-LR. A linear relationship exists between the extent of quenching and the concentration of MC-LR. Parameters affecting the quenching were investigated and optimized. The limit of detection is 6.9?×?10?11 mol L?1 (3σ). The method was successfully applied to the determination of MC-LR in water samples.
Figure
Bioconjugates of CdSe/CdS quantum dots and anti-microcystin-leucine-arginine (MC-LR) antibody were prepared through step A to C. Their fluorescence intensity was quenched linearly with addition of MC-LR at different concentrations (step D). A method for determination of MC-LR was thus established and it was simple, sensitive and specific with low-cost instrumentation  相似文献   

7.
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione (GSH) in physiologically relevant concentrations. CdTe quantum dots (QDs) were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions (hydrogen bonding and electrostatic interaction) and quenches the photoluminescence of the modified QDs by an electron transfer process. GSH, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. There are linear relationships between the concentrations of dopamine and GSH respectively and the intensity of the photoluminescence intensity of the QDs both in the quenched and regenerated form, the ranges being 0.0005 to 0.1 mmol?L?1 for dopamine, and 0.1 to 10 mmol?L?1 for GSH. The method was applied to the determination of dopamine and GSH in human serum samples with satisfactory results.
Figure
We have constructed a fluorescent nanosensor for dopamine (DA) and glutathione in physiologically relevant concentrations. QDs were coated with silica, and dopamine-quinone (formed by oxidation of DA) is captured on the surface of silica via dual interactions and quenches the photoluminescence of the modified QDs by an electron transfer process. Glutathione, in being a strong reducing agent, can chemically reduce the dopamine-quinone on the QDs, and this results in recovered photoluminescence. The method was applied to the determination of dopamine and glutathione in human serum sample with satisfactory results  相似文献   

8.
CdTe quantum dots capped with thioglycolic acid (TGA) display a strong turn-on fluorescence response if exposed to solutions of cysteine (Cys). In order to exploit this effect, a molecularly imprinted polymer (MIP) for Cys was covalently linked to the QDs via allyl mercaptan. The resulting nanomaterials (QDs, MIP-coated QDs, and nonimprint-coated QDs) were characterized by FTIR and scanning electron microscopy. The adsorption of Cys was studied in phosphate buffer (pH 7.4) with respect to equilibration times (5, 15, and 40 min, respectively), binding constants [2.98, 2.42, and 0.96 (×104 M?1)], and Langmuir isotherms (R2?=?0.9995, 0.9999, and 0.9983) in the Cys concentration range between 3.33 μM to 500 μM. The method has a detection limit of 0.85 μM (3σ, blank, for n?=?10). The selectivity of the MIP-coated QDs for Cys over 19 other amino acids is similar to that of bare QDs, but MIP-QDs afford better recoveries of Cys from solutions also containing bovine serum albumin (90 %) and fetal bovine serum (97 %), respectively, when compared to the recoveries that are obtained with bare (non-imprinted) QDs (135 % and 120 %). This is probably due to the fact that the outer MIP shell largely reduces protein wrapping, dot aggregation, and matrix inclusion.
Figure
Using the turn-on fluorescence detection of cysteine template, quantum dots (QDs) conjugated with MIP via allyl mercaptan were synthesized in a one-pot polymerization and exhibited a higher binding selectivity in the presence of serum matrices compared to bare QDs and non-imprinted polymer-QDs.  相似文献   

9.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

10.
We report loading of vitamin C (ascorbic acid) on to lysozyme-shelled microbubbles. The interaction between lysozyme-shelled microbubbles and vitamin C was studied by use of cyclic and differential pulse voltammetry, zeta potential measurements, and scanning electron microscopy. The effect of microbubbles on electrochemical measurement of ascorbic acid was evaluated. The linear range for ascorbic acid obtained for differential pulse measurement in the presence of 1 mg mL?1 microbubbles was 1–50 μmol L?1 (y?=?0.067x?+?0.130, r 2?=?0.995), with a detection limit of 0.5 μmol L?1. The experimental conditions, i.e., pH and ionic strength, were optimized to improve the interaction between ascorbic acid and lysozyme-shelled microbubbles. The results were satisfactory when the interaction was performed for 1 h in aqueous solution at pH 6. The amount of vitamin C loaded on the microbubbles (90 % of the analyte added, RSD inter-expt. = 3 %, n?=?6) and the stability of microbubbles–ascorbic acid complex (until 72 h at 25 °C) were also evaluated by use of differential pulse voltammetry and zeta potential measurements.
Figure
Schematic figure of the interaction between LSμB (positively charged) and ascorbic acid (negatively charged). Ultrasound (US) assisted breaking of the LSμB's shell causes the release of drug located on the surface of the microbubbles  相似文献   

11.
We describe the synthesis of ß-cyclodextrin modified magnetic nanoparticles (CD-mNPs) as a material for solid-phase extraction of the cancer biomarker 5-hydroxy-indole-3-acetic acid (5-HIAA) from urine. The CD-mNPs were characterized by TEM, FTIR, and XRD, and the kinetics and adsorption isotherms were studied. The strong interaction between the CD-mNPs and 5-HIAA is the main driving force for recognition and extraction, while the magnetic core of the NPs allows their separation from the sample matrix. Recovery of 5-HIAA from the adsorbent using an adequate solvent regenerated the adsorbent for further use. 5-HIAA was then quantified by fluorometry of its complex with ß-CD. The method works in the 1?×?10?7 to 1?×?10?5 mol L?1 (R2 0.9982–0.9996) concentration range, and the limits of detection (3σ) and quantification (10 σ) of the method are 1.2?×?10?8 mol L?1 and 4.01?×?10?8 mol L?1 5-HIAA, respectively. The recovery of 5-HIAA from urine samples spiked with 5-HIAA in three concentrations (1.4?×?10?6, 4.50?×?10?6 and 1.0?×?10?5 mol L?1) are within 63?±?3 %.
Figure
Cyclodextrin functional magnetic nanoparticles as sorbents for separation of 5-hydroxy-3-indole acetic acid and its fluorescence determination after released with methanol.  相似文献   

12.
Multicolor and water-soluble CdTe quantum dots (QDs) were synthesized with thioglycolic acid (TGA) as stabilizer. These QDs have a good size distribution, display high fluorescence quantum yield, and can be applied to the ultrasensitive detection of Pb(II) ion by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and quenching of luminescence is most effective for the smallest particles. The quenching mechanism is discussed. Fairly selective detection was accomplished by utilizing QDs with a diameter of 1.6?nm which resulted in a detection limit of 4.7?nmol?L?1 concentration of Pb(II). The method was successfully applied to the determination of Pb(II) in spinach and citrus leaves, and the results are in good agreement with those obtained with atomic absorption spectrometry.
Figure
Five colors water-soluble CdTe QDs are synthesized with thioglycolic acid as a stabilizer. These QDs can be applied to the ultrasensitive detection of Pb2+ by virtue of their quenching effect. The size of the QDs exerts a strong effect on sensitivity, and the quenching of luminescence is most effective when the smallest particles are used. The detection limit is 4.7?nmol?L?1 when QDs-I (1.6?nm) are used, which is the lowest in the current related study.  相似文献   

13.
We report on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from anti-aflatoxin B1 antibody (immobilized on the shell of CdTe quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The highly specific immunoreaction between the antibody against aflatoxin B1 on the QDs and the labeled-aflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photoexcitation of the QDs. In the absence of unlabeled aflatoxin B1, the antigen-antibody complex is stable, and strong emission resulting from the FRET from QDs to labeled aflatoxin B1 is observed. In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed. The reduction in the fluorescence intensity of the acceptor correlates well with the concentration of aflatoxin B1. The feasibility of the method was established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the increased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spike human serum, over the range of 0.1–0.6 μmol·mL?1. The limit of detection is 2?×?10?11 M. This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require excessive washing and separation steps.
Figure
A nanobiosensor has been fabricated based on a competitive immunoassay for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET). In the presence of aflatoxin B1, it will compete with the labeled aflatoxin B1-albumin complex for binding to the antibody-QDs conjugate so that FRET will be increasingly suppressed.  相似文献   

14.
The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10?8 to 10?4 mol L?1, and the detection limit is 5.10?8 mol L?1.
Figure
This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.  相似文献   

15.
We report on a fast, simple and accurate method for the determination of proline in urine samples by employing a nanostructured film of conducting polypyrrole for electrochemically controlled solid-phase microextraction, and ion mobility spectrometry (IMS) for detection. This method has the advantages of simple sample preparation and a sensitivity of IMS to proline that is higher than that for other amino acids. The calibration curve is linear in the range of 0.5–60 μg L?1 (4–521 nmol L?1), and the detection limit is 0.2 μg L?1. The electrochemical potentials for uptake and release were optimized. The method was successfully applied to the clean-up and quantitation of trace amounts of proline in urine samples.
Figure
Proline determination by electrochemically controlled solid phase microextraction coupled to ion mobility spectrometry  相似文献   

16.
We report on the electrodeposition of palladium nanomaterials in choline chloride–based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (<2 s), high sensitivity (74.9 μA m(mol L?1)?1?cm?2) and broad linearity in the range from 0.1 to 800 μmol L?1 with a detection limit of 0.03 μmol L?1 (S/N?=?3).
Figure
Scheme 1 illustrated the fabrication strategy of the PdNPs/GCE. The first step was the electrodeoposition of CoNPs on the bare GCE. The second step is consist of two processes: (1) A replacement reaction of CoNPs and Pd2+ was happened along with the formation of PdNPs. CoNPs on the electrode were translated into Co2+ and went into the solution. Pd2+ in the solution was translated into PdNPs and adhered to the GCE surface. (2) A certain voltages was applied, the unreacted Pd2+ was further electrochemical deposited on the formed PdNPs nucleus. This is the first attempt to joint chemical replacement action with template assisted electrodeposition.  相似文献   

17.
A competitive microplate fluoroimmunoassay was developed for the determination of human serum albumin in urine. It is based on the use of biotinylated CdTe quantum dots (QDs) whose synthesis is optimised in terms of storage stability, purification, and signal-to-noise ratio. The bioconjugated QDs were characterised by gel chromatography and gel electrophoresis. Storage stability and quantum yield were investigated. The excitation/emission wavelengths are 360/620?nm. The immunoassay of human serum albumin in urine has a working range from 1.7 to 10?μg.mL?1, and the limit of detection is 1.0?μg.mL?1.
Figure
Preparation of biotinylated quantum dots is described. Their structure consists of biotinylated denatured bovine serum albumin attached to the quantum dot surface. Fluoroimmunoassay for human serum albumin was developed utilizing thus prepared bioconjugate.  相似文献   

18.
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The other end of the probe DNA is linked, via carboxy groups, to magnetic nanoparticles. The binding of target DNA transforms the hairpin structure of the probe DNA and causes the exposure of ester bonds. This results in the release of electro-active ferrocene after hydrolysis of the ester bonds, and in an observable electrochemical response. The quantity of target DNA in the concentration range between 1?×?10?12 mol·L?1 and 1?×?10?8 mol·L?1 can be determined by measuring the electrochemical current. The method can detect target DNA with rapid response (30 min) and low interference.
Figure
A lipase-based electrochemical biosensor has been fabricated for the quantitative determination of target DNA. It is based on a stem-loop nucleic acid probe labeled with ferrocene containing a butanoate ester that is hydrolyzed by lipase. The method can detect target DNA with rapid response (30 min) and low interference.  相似文献   

19.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

20.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号