首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of two charged polymer networks in a solution of an oppositely charged surfactant was studied. It was shown that such a system (depending on preset parameters) can exist in different modes: without micelles in both networks, with micelles in one of the network, and with micelles in both networks. The dependences of network dimensions and ion concentrations inside the networks on the surfactant concentration in the solution, the fraction of charged units in one of the networks, and the relative size of the system were obtained. It is possible to affect the state of one network by varying the parameters (e.g., the proportion of charged units) of the other network. Different network swelling scenarios depending on the relative size of the system and the fraction of charged network units were revealed.  相似文献   

2.
3.
Dynamic viscoelastic models of the system of two different interpenetrating polymer networks with different topology and type of interactions were used for calculating spectra of relaxation times of the system under consideration. It was shown, that two branches of the relaxation spectrum appear for two models of interpenetrating networks with different components. One of the branches is the branch of the collective motion of double network consisting of two initial interacting networks. Parameters of this branch of relaxation spectrum are defined by both own elastic constants of each of interacting networks and by effective quasi-elastic interactions between two networks. This branch is the low frequency one and is described by broad relaxation time spectrum. The second branch is the high frequency one and characterizes mutual local motions of two interacting networks. The relaxation spectrum of this branch is comparatively narrow and depends on the quasi-elastic constants and mutual friction which is defined by the entanglements of the networks and by its effective rigidity. The second branch does not contain extremely large relaxation times for infinitely large networks.  相似文献   

4.
The microporous molecular networks based on rigid tetrafunctional units are synthesized via organic sol–gel polymerization of 2,2′,7,7′‐tetraamino‐9,9′‐spirobifluorene (TASBF) and/or tetrakis(4‐aminophenyl)methane (TAPM) with a diisocyanate, hexamethylene diisocyanate (HDI), or p‐phenylene diisocyanate. This study is performed as an extension of our previous report on the first organic sol–gel method, which enabled the synthesis of microporous molecular networks via a two‐stage mechanism involving the formation of colloidal dispersions of the nanoparticulate molecular networks and their subsequent growth to monolithic networks on solvent evaporation. The sol–gel‐synthesized molecular networks obtained by incorporating TASBF as a network former show improved porosity, processability, and thermal stability than the TAPM‐based system. The improved porosity of TASBF‐based networks is attributed to higher rigidity of the spirobifluorene compared with the tetraphenylmethane units. We also demonstrate the synthesis of mixed organic molecular networks by sol–gel copolymerization of the two network formers, TASBF and TAPM, and a diisocyanate monomer. The sol–gel transformation of TASBF/TAPM/HDI occurred at longer reaction times with increasing the amount of TASBF in the TASBF/TAPM/HDI mixture. The results indicate that the organic sol–gel method can be further optimized by adjusting various synthesis parameters to create new functional organic molecular network materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
The β relaxation has been observed in the dynamic mechanical spectra of a range of styrene-unsaturated polyester networks. The influences on the β relaxation of the polyester molecular weight, the nature of the diol and saturated dioic acid units and the presence of water were investigated. From these studies, the relaxation is shown to arise from the motion of the saturated dioic acid-diol grouping in the polyester segments, and appears to be closely connected with the glass transition of the uncrosslinked polyester. Studies of the influence of the styrene concentration in the network suggest that the bulky styrene units may restrict the motion of some of the potential relaxation sites.  相似文献   

6.
The dielectric relaxation properties are considered for polymer networks built from polar macromolecules with the dipole moment directed along the end-to-end chain vector. The viscoeleastic cubic model of a regular network is used. The fixed average volume of a polymer network is ensured by the effective internal pressure. The dynamic models of polymer networks with external and interchain friction are studied. Two cases are considered: (1) polar chains cross-linked in a network at their ends, and (2) a densely cross-linked network with many network junctions per polar chain. The expressions for the autocorrelation functions of the total dipole moment of a network, which determine the dielectric susceptibility, are calculated. The relaxation spectrum of the autocorrelation function consists of two regions: the high-frequency relaxation spectrum of a chain fragment between two neighbouring junctions (intrachain relaxation spectrum) and the lowfrequency interchain relaxation spectrum. The interchain relaxation spectrum is determined by cooperative motions of chains which form a network. The characteristic time of this spectrum for networks of type (1) is the relaxation time of a chain between junctions τmin. For networks of type (2) a second time scale τ1 exists, which corresponds to motions inside the volume occupied by a single long polar chain included in a network. It leads to different time behaviour of the autocorrelation functions for both network models. The existence of only interchain friction in the network model leads to a cut-off of the relaxation spectrum at the time τmax depending on the volume of viscous interchain interactions.  相似文献   

7.
氯化原位接枝反应制备羟基官能化CPE——结构表征   总被引:1,自引:0,他引:1  
以高密度聚乙烯(HDPE)为基体,采用气-固氯化原位接枝反应合成了以氯化聚乙烯(CPE)为骨架聚合物、丙烯酸-2羟基乙酯(HEA)为支链的接枝共聚物.反应中不需要加入任何引发剂,以氯自由基引发接枝及氯代反应,得到羟基官能化CPE接枝聚合物.并用1H-NMR,FT-IR,GPC及X-射线衍射等对接枝共聚物的结构进行了表征.  相似文献   

8.
The local relaxation properties of polymer networks with a two‐dimensional connectivity are considered. We use the mesh‐like network model in which the average positions of junctions form the regular spatial structure consisting of square repeating units (network cells). The two‐dimensional polymer network consisting of “bead and spring” Rouse chains and the simplified coarse‐grained network model describing only the large‐scale collective relaxation of a network are studied. For both dynamic network models the set of relaxation times and the transformation from Cartesian coordinates of network elements to normal modes are obtained. Using the normal mode transformation obtained, in Part 2 of this series the exact analytical expressions for various local dynamic characteristics of the polymer network having a two‐dimensional connectivity will be calculated.  相似文献   

9.
Poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) networks were prepared from macromonomer diols functionalized with methacrylic anhydride, which allows one to get self‐crosslinkable polymers. Besides, both macromonomers were copolymerized to get copolymer networks with different compositions (namely, PCL/PLA: 0/100, 70/30, 50/50, 30/70, 100/0). Dielectric and calorimetric experiments allow one to conclude the microphase separation of the system: one phase made of pure PCL domains while the second one consists of caprolactone units, which somehow plasticize PLA and moves its main relaxation (glass transition) to lower temperatures. The effect of crosslinking PLA on the dynamics of the system was further investigated by comparing with the dynamics for linear PLA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 183–193, 2009  相似文献   

10.
The high-frequency dynamics of (HF)(x)(H(2)O)(1-x) solutions has been investigated by inelastic x-ray scattering. The measurements have been performed as a function of the concentration in the range x = 0.20-0.73 at fixed temperature T = 283 K. The results have been compared with similar data in pure water (x = 0) and pure hydrogen fluoride (x = 1). A viscoelastic analysis of the data highlights the presence of a relaxation process characterized by a relaxation time and a strength directly related to the presence of a hydrogen-bond network in the system. The comparison with the data on water and hydrogen fluoride shows that the structural relaxation time continuously decreases at increasing concentration of hydrogen fluoride passing from the value for water to the one for hydrogen fluoride tau(alphaHF), which is three times smaller. This is the consequence of a gradual decreasing number of constraints of the hydrogen-bond networks in passing from one liquid to the other.  相似文献   

11.
A series of polylactide networks has been prepared by the copolymerization of a biodegradable oligolactide macromer with hydrophobic methyl methacrylate monomer and hydrophilic hydroxyethyl acrylate monomer, with different amounts of the hydrophilic monomer. The incorporation of the hydrophilic units into the network has been characterized with thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical spectrometry. A homogeneous material results, showing a single glass‐transition temperature and a characteristic relaxation behavior that is not the sum of those of the pure components separately. Additional hydrophilic units in the network chains lower the rubbery modulus, keeping a high modulus value at room temperature, and manifestly increase the degradation rate of the polymer. This can be attributed both to the higher water swellability of the network when hydrophilic units are present and to the higher water diffusion coefficient in a network, which has a lower crosslinking density. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 656–664, 2006  相似文献   

12.
UV-cured networks prepared from mixtures of di-functional (polyethylene-glycol di-acrylate) and mono-functional (2-ethylhexyl acrylate) acrylates were analysed after hydrolysis, by aqueous size-exclusion chromatography coupled to on-line reversed-phase liquid-chromatography. The mean network density and the fraction of dangling chain ends of these networks were varied by changing the concentration of mono-functional acrylate. The amount and the molar-mass distribution of the polyethylene-glycol chains between cross-links (M(XL)) and polyacrylic acid (PAA) backbone chains (the so-called kinetic chain length (kcl)) in the different acrylate networks were determined quantitatively. The molar-mass distribution of kcl revealed an almost linear dependence on the concentration of mono-functional acrylate. Analysis of the starting materials showed a significant concentration of mono-functional polyethylene-glycol acrylate. In combination with the analysis of the extractables of the UV-cured networks (polymers not attached to the network, impurities that originate from the photo-initiator and unreacted monomers), more insight in the total network structure was obtained. It was shown that the UV-cured networks contain only small fractions of residual compounds. With these results, the chemical network structure for the different UV-cured acrylate polymers was expressed in network parameters such as the number of PAA units which are cross-linked, the degree of cross-linking, and the network density, which is the molar concentration of effective network chains between cross-links per volume of the polymers. The mean molar mass of chains between chemical network junctions (M(C)) was calculated and compared with results obtained from solid-state NMR and DMA. The mean molar mass of chains between network junctions as determined by these methods was similar.  相似文献   

13.
A dynamic model of a heterogeneous polymer network system is proposed. A polymer network is presented as an ensemble of cross‐linked regions (domains) of different sizes, the domains have similarly regular internal structures. To a first approximation, these domains are treated independently of each other. Relaxation modulus, storage modulus, and loss modulus of the heterogeneous polymer network are calculated. For the purpose of averaging over all network domains the exponential number distribution of chain segments in domains is used. This type of distribution has been previously proposed by one of the authors in the frame of the aggregation model. It is shown that a structure heterogeneity introduced into a network model according to the above domain approach leads, at long times, to the stretched exponential type of time dependence of relaxation modulus instead of the power‐law dependence predicted by the theories dealing with regular networks. The network heterogeneity also leads to a more rapid decrease in the storage modulus in the region of low frequencies, as compared with regular polymer networks. It is shown that the loss modulus in the region of its maximum is very slightly sensitive to the “long‐range” network heterogeneity considered.  相似文献   

14.
An outstanding challenge in modern society remains how to make crosslinked polymers (thermosets) more recyclable. A breakthrough solution to this challenge has been the introduction of dynamic covalent bonds in polymer networks, yielding covalent adaptable networks (CANs). Ongoing research is focused on finding new suitable dynamic covalent chemistries and on how to tune the material properties of CANs derived from these new chemistries. Here, we first compare two different dynamic boronic acid based covalent adaptable networks, namely, a conventional boronate-diol and a novel boronate-TetraAzaADamantane (TAAD) system. We show that incorporating boronate-TAAD bonds in networks results in stiffer materials, as seen in a slower relaxation and higher shear and storage moduli. This offers access to more mechanically robust boronate-based materials, compared to conventional boronate-based gels. Next, we investigate the effect of molecular tuning via the electron density of meta-positioned ring substituents on the macroscopic material properties for the boronate-TAAD network. By comparing relaxation experiments on materials with different substituents, we show that the macroscopic network relaxation can be tuned through the Hammett parameter of the meta-substituent and the activation energy of the boronate-TAAD exchange. This enables subtle control over the (dynamic) material properties of these novel, robust boronate-based networks.  相似文献   

15.
Epoxy resin networks modified with different functionalized liquid polybutadiene were characterized by scanning electron microscopy, atomic force microscopy (AFM), and dielectric thermal analysis techniques. Different morphologies were observed for these different systems, which were attributed to different interaction degrees between the components. Hydroxyl‐terminated polybutadiene (HTPB) and carboxyl‐ terminated polybutadiene (CTPB) resulted in epoxy networks with two‐phase morphology that differed in rubber particle size. The use of isocyanate‐terminated polybutadiene (NCOTPB) resulted in transparent thermoset material, whose rubber domains were in the nanoscale dimension, only detected by the AFM technique. The different morphological aspects in these epoxy systems also affected the dielectric properties. The epoxy–HTPB network exhibited two low temperature relaxation peaks corresponding to two different phases present in the system, whereas the epoxy–CTPB or epoxy–NCOTPB systems, whose rubber particles are well adhered to the epoxy matrix by chemical bonds, displayed only one single low temperature relaxation peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4053–4062, 2004  相似文献   

16.
The dielectric relaxation of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl (K15) in the presence of an anisotropic network has been studied. Anisotropic networks containing K15 molecules were prepared by in situ polymerisation of liquid-crystalline diacrylate molecules in a mixture containing K15. By changing the network concentration, the effect of the network molecules on the behaviour of the K15 molecules, which were not chemically attached to the network, was investigated. With increasing network concentration it was found that the mean relaxation times of K15 molecules shifted to lower temperatures and that their distribution became broader. The activation energy associated with the relaxation, however, remained almost constant before showing some increase at high network concentrations.  相似文献   

17.
Many characteristic features of the relaxation spectra of the different types of polymer networks (meshlike and tree-like) manifesting in experimental behaviour are determined by manifold types of local and long-range irregularities or inclusions existing even in the simplest network structures. These irregularities in the local topology, in the fluctuations of the local orientational order existing due to stretching of the chains in the bulk elastomers (even in the non-ordered elastomers), also due to possible LC-ordering, the distribution of chain lengths between junctions and possible existence of cross-link agglomerations and domains at random cross-linking and the influence of the position of the chain element relative to junctions lead to variety of relaxation spectra, frequency and time-dependencies. The long-range hydrodynamic effects in bulk network can also lead to drastic variation of relaxation spectra. The inclusion of elongated rigid particles in polymer gels and network leads to the appearance of new branches of relaxation spectra changing and overlapping the relaxation spectra of the primary network system.  相似文献   

18.
Summary: Equilibrium and local dynamic properties of ordered polymer networks with included rod‐like particles are considered using a simplified network model. Lagrange multipliers in the equations of motion of rigid rods are replaced by their averaged values. This approximation corresponds to modelling rod‐like particles by elastic Gaussian springs with mean‐square lengths independent of the orientational order. Nematic‐like interactions between network segments and rods are taken into account in terms of the Maier‐Saupe mean‐field approximation. Nematic ordering of rods induces network segments ordering and changes the relaxation spectrum of the network. The relaxation spectrum of the ordered network splits into two main branches for parallel and perpendicular components of chain segments with respect to the director. Relaxation times of a polymer network are calculated as functions of the wave number for the corresponding normal mode and of the order parameter taking into account both the dynamic factor (determined by friction effects) and the statistical factor (related to mean‐square fluctuations of segment projections). We compare the relaxation spectra of ordered unstretched polymer networks with fixed boundaries with those for polymer networks at free boundaries. A polymer network with free boundaries is stretched along the director. This produces additional fine structure of the two main branches in the relaxation spectrum.

Cell of a three‐chain network model with included rods.  相似文献   


19.
20.
The intensity of the water-induced γ relaxation (see ref. 1) in crosslinked polyester networks in creases rapidly at low water concentrations (0 to 0.5% by weight). At higher water concentrations (0.5 to 3.0%) the intensity of the γ relaxation approaches a constant value. The shift of the relaxation peak to lower temperatures shows a similar pattern of behavior. These results have been related to the fraction of water involved in the relaxation and the changing nature of the relaxation sites with the increase in water concentration. The important role that fumarate units play in the γ relaxation has also been confirmed; however, the chemical nature of the relaxing unit appears to be more complex than was originally considered. Two models are proposed for this behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号