首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a simple and reliable method for the determination of trace cadmium ion using a glassy carbon electrode (GCE) modified with cupferron, ß-naphthol and MWCNTs. The operational mechanism consists of several steps: first, the ligand cupferron on the modified electrode reacts with Cd2+ ion to form a chelate compound. Next, this chelate is adsorbed by the carrier ß-naphthol following the principle of organic co-precipitation. Finally, the coprecipitated complex is detected by the GCE. This scheme is interesting because it combines preconcentration and electrochemical detection. Two linear responses are obtained, one in the concentration range of 5.0?×?10?11 to 1.6?×?10?8 M, the other in the range of 1.6?×?10?8 to 1.42?×?10?6 M, with a lower detection limit of 1.6?×?10?11 M. This modified GCE does not suffer from significant interferences by Cu(II), Hg(II), Ag(I), Fe(III), Pb(II), Cr(III), Zn(II), NO3?, Cl?, SO 4 2? ions and EDTA. The response of the electrode remained constant for at least 3 weeks of successive operation. The method presented here provides a new way for the simultaneous separation, enrichment, and electrochemical detection of trace cadmium ion.
Figure
Separation, enrichment and electrochemical detection of trace cadmium ion were simultaneously and synchronously carried through on the electrode modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes. It shows higher selectivity, excellent sensitivity and good stability.  相似文献   

2.
The cloud point extraction procedure is an alternative to liquid–liquid extraction and based on the phase separation that occurs in aqueous solutions of non-ionic surfactants when heated above the so-called cloud point temperature. We review the more recent applications for determination of ions by means of this procedure for sample preparation over the range 2009 to first part of 2011. Following an introduction, the article covers aspects of cloud point extraction of one metal ion, two metals ions simultaneously, three metal ions simultaneously, multielement analysis, anions analysis, and on-line cloud point extraction. One hundred sixteen references are cited.
Figure
Scheme of the CPE procedure. CPE techniques exploit a property of most non-ionic surfactants that form micelles in aqueous solution: they become turbid when heated to the appropriate cloud point temperature. Above the cloud point temperature, the micellar solution separates into a small, surfactant rich phase and a larger diluted aqueous phase  相似文献   

3.
We describe a method for single drop microextraction of manganese from fish, mollusk, and from natural waters using the reagent 1-(2-pyridylazo)-2-naphthol as the complexing agent and chloroform as the fluid extractor. After extraction, the analyte was directly submitted to graphite furnace electrothermal atomic absorption spectrometry. Once optimized, the method has a detection limit of 30 ng L?1, a limit of quantification of 100 ng L?1, and an enrichment factor of 16. Its accuracy was verified by applying the procedure to the following certified reference materials: apple leaves, spinach leaves, bovine liver, and mussel tissue. The procedure was also successfully applied to the determination of manganese in seafood and natural waters.
Figure
Preconcentration system using single-drop microextraction for the determination of manganese  相似文献   

4.
We report on a simple, sensitive and selective method for the spectrophotometric determination of Ni2+ in water samples. The analyte ions were collected on a membrane filter in the form of their red complex with 1-(2-pyridylazo)-2-naphthol (PAN), and the absorption spectra of the colored membrane filters were acquired. Effects of pH value, sample volume, and amount of PAN were examined in order to optimize sensitivity. The interference by common other ions was eliminated using appropriate masking agents. The absorbance is linearly related to the concentration of Ni2+ in the ranges from 0.3 to 1.5 μg L?1, and from 2 to 10 μg L?1, respectively, the correlation coefficients (R2) being 0.9871 and 0.9954. Under the optimal conditions, the detection limit is 0.1 μg L?1. The recoveries in case of spiked samples are between 95.0% and 101.5%, and the relative standard deviations range from 2.8% to 4.1%.
Figure
Direct ultra-sensitive spectrophotometric determination of Ni2+ as Ni-PAN complex on membrane filters  相似文献   

5.
A method was developed for the determination of cadmium(II) by ligand-less solid phase extraction that is based on the direct retention of Cd(II) in a mini-column filled with a silica gel modified with an amino-functionalized ionic liquid. The effects of pH, sample volume and its flow rate, eluent concentration and its volume, the flow rate of eluent, and of potential interferences on extraction and desorption were optimized. Following its determination by electrothermal atomic absorption spectrometry, the detection limit for Cd(II) is 8.9 ng L?1, and the relative standard deviation is 2.3 % (at 1.0 ng mL?1; for n?=?5). The method was applied to the analysis of Cd(II) in a certified reference material (laver; GBW10023), and the recoveries ranged from 97.0 to104.0 %
Figure
◆ Amino-functionalized ionic liquid modified silica gel (NH2-IL/SG) obtained a better absorption for Cd(II) than bare silica gel in the tested pH range due to electrostatic interaction between amino groups and Cd(II).  相似文献   

6.
We have synthesized cadmium(II) ion-imprinted polymers (IIP) and non-imprinted polymers (NIP) using 1-(2-pyridylazo)-2-naphthol as a ligand. The materials were used to prepare a carbon paste electrode for the determination of Cd(II). Polymerization was performed with (a) methacrylic acid as a functional monomer, (b) ethyleneglycol dimethacrylate as the crosslinking monomer, and (c) 2,2′-azobis(isobutyronitrile) as the initiator. Imprinted cadmium ion was removed from the polymeric matrix using nitric acid. The measurements were carried out in an closed circuit after accumulation at ?1.2?V, this followed by electrolysis of the accumulated Cd(II) by voltammetric scanning from ?1.0 to ?0.6?V. The parameters governing the response of the electrode were studied. Under optimized conditions, the response of the electrode is linear in the range from 2.0 to 200?ng?mL?1. The detection limit is 0.31?ng?mL?1. The relative standard deviations are ±3.4 and ±2.1?% for 7 successive determinations of 20.0 and 50.0?ng?mL-1 of Cd(II), respectively. The method was applied to the determination of cadmium (II) in water and food samples.
Figure
a) Preparation of modified carbon paste b) Preparation of Cd(II)-IIP-MCPE c) Differential pulse anodic stripping voltammetry d) Voltammogram  相似文献   

7.
In order to reveal the time-depending mercury species uptake by human astrocytes, a novel approach for total mercury analysis is presented, which uses an accelerated sample introduction system combined on-line with an inductively coupled plasma mass spectrometer equipped with a collision/reaction cell. Human astrocyte samples were incubated with inorganic mercury (HgCl2), methylmercury chloride (MeHgCl), and thimerosal. After 1-h incubation with Hg2+, cellular concentrations of 3 μM were obtained, whereas for organic species, concentrations of 14–18 μM could be found. After 24 h, a cellular accumulation factor of 0.3 was observed for the cells incubated with Hg2+, whereas the organic species both showed values of about 5. Due to the obtained steady-state signals, reliable results with relative standard deviations of well below 5 % and limits of detection in the concentration range of 1 ng L?1 were obtained using external calibration and species-unspecific isotope dilution analysis approaches. The results were further validated using atomic fluorescence spectrometry.
Figure
?  相似文献   

8.
Size-exclusion chromatography (SEC) and capillary zone electrophoresis (CZE) coupled with inductively coupled plasma mass spectrometry were applied to characterize low, medium, and high molecular weight cadmium complexes with glutathione and phytochelatins (PCs). The dominant stoichiometry of the complexes formed in vitro was established as 1:1 using electrospray ionization mass spectrometry. Calculated molecular masses of Cd1L1 complexes were used for calibration of the SEC and CZE methods. The results showed a lower (2 kDa) SEC column exclusion limit for cadmium complexes compared with free peptides (10 kDa), and most of the high molecular weight cadmium species were eluted in the void volume of the column. Moreover, the CZE method based on the semiempirical model of Offord to elucidate peptide migration allowed us to show a high propensity of Cd–PC complexes for polymorphism on complexation, which was also observed for extracts of Arabidopsis thaliana treated with cadmium. All the information presented is vital for understanding the mechanism of metal deactivation in plants.
Figure
Estimation of molecular mass of Cd-thiopeptide complexes by size electrophoretic mobility  相似文献   

9.
A carbon paste electrode (CPE) was modified with multi-wall carbon nanotubes and successfully applied to the determination of silver ion by differential pulse anodic stripping voltammetry. Compared to a conventional CPE, a remarkably improved peak current response and sensitivity is observed. The analytical procedure consisted of an open circuit accumulation step for 2?min in ?0.4?V, this followed by an anodic potential scan between +0.2 and?+?0.6?V to obtain the voltammetric peak. The oxidation peak current is proportional to the concentration of silver ion in the range from 1.0?×?10?8 to 1.0?×?10?5?mol?L?1, with a detection limit of 1.8?×?10?9?mol?L?1 after an accumulation time of 120?s. The relative standard deviation for 7 successive determinations of Ag(I) at 0.1???M concentration is 1.99%. The procedure was validated by determining Ag(I) in natural waters.
Figure
Differential pulse voltammogram (DPV) of Ag+ solution at MCPE  相似文献   

10.
We have developed a simple and efficient method for dispersive liquid-liquid microextraction of 4-nitrophenol, 2-naphthol and bisphenol A in real water samples. It is making use of solidified floating organic droplets of 1-dodecanol which has low density and a proper melting point. The type and volume of extraction solvent and dispersive solvent, the effect of salts, pH value and extraction time were optimized and resulted in enrichment factors of 84 for 4-nitrophenol, 123 for 2-naphthol, and 97 for bisphenol A. The limits of detection by HPLC are 1.50, 0.10 and 1.02 ng · mL?1, respectively. Excellent linearity is observed in the concentration range from 10 to 800 ng · mL?1, with coefficients of correlation ranging from 0.9988 to 0.9999. The relative standard deviations (for n?=?5) are from 3.2 to 5.3 %, and relative recoveries for the three phenols in tap, river and spring water range from 85.0 to 105.0 %, 98.3 to 110.0 %, and 98.6 to 109.0 %, respectively.
Figure
Chromatograms of river water blank (b) and spiked river water (a, 500 ng ? mL?1) analyzed with DLLME-SFO-HPLC. Peak identification: (1) p-nitrophenol; (2) 2-naphthol; (3) bisphenol A. Liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) has a high enrichment factor (84, 123and 97), acceptable relative recovery (85.0 %–110.0 %), good repeatability (5.27 %, 3.54 % and 3.16 %) and a wide linear range (10–800 ng · mL?1) for the determination of p-nitrophenol, 2-naphthol and bisphenol A.  相似文献   

11.
We have developed a method for the determination of trace levels of the rare earth elements La, Eu, and Yb in biological and environmental samples. It is based on solidified floating organic drop microextraction using 1-(2-pyridylazo)-2-naphthol (PAN) as a chelator, followed by electrothermal vaporization (ETV) and quantification by inductively coupled plasma mass spectrometry. PAN also acts as a modifier in ETV. The effects of pH, amount of PAN, extraction time, stirring rate, volume of sample solution, and temperature program were examined. Under optimized conditions, the detection limits are 2.1, 0.65 and 0.91 pg mL?1 for the elements La, Eu and Yb, respectively. The relative standard deviations are <6.0 % (c?=?0.1 ng mL?1, n?=?9). When applied to the analysis of (spiked) natural water samples, the recoveries range from 92 to 105 %. The accuracy was validated with certified reference materials (combined sample of branch and leaf of shrub: GBW 07603 and human hair: GBW 07601), and the results were in good agreement with the certified values.
Figure
?Solidified floating organic drop microextraction was combined with ETV for ICP-MS. ?PAN acted as both a chelating agent and a chemical modifier. ?The method was used for analysis of rare earth elements in real samples. ?The method has the merits of low detection limit, good precision and accuracy.  相似文献   

12.
Graphene-based magnetic nanoparticles (G-Fe3O4) were prepared and used as an effective adsorbent for the solid-phase extraction of trace quantities of cadmium from water and vegetable samples. The method avoids some of the time-consuming steps associated with traditional solid phase extraction. The excellent sorption property of the G-Fe3O4 system is attributed to π - π stacking interaction and hydrophobic interactions between graphene and the Cd-PAN complex. The effects of pH, the amount of G–Fe3O4, extraction time, type and volume of eluent, desorption time and interfering ions on the extraction efficiency were optimized. The preconcentration factor is 200. Cd(II) was then quantified by flame atomic absorption spectrometry with a detection limit of 0.32 ng mL?1. The relative standard deviation (at 50 ng mL?1; for n?=?10) is 2.45 %. The method has a linear analytical range from 1.1 to 150 ng mL?1, and the recoveries in case of real samples are in the range between 93.1 % and 102.3 %.
Figure
General procedure for magnetic preconcentration of cadmium ions from aqueous solution using graphene-based magnetic nanoparticles  相似文献   

13.
This paper reports on the first experimental study of the energies of noncovalent fluorine bonding in a protein-ligand complex in the absence of solvent. Arrhenius parameters were measured for the dissociation of gaseous deprotonated ions of complexes of bovine β-lactoglobulin (Lg), a model lipid-binding protein, and four fluorinated analogs of stearic acid (SA), which contained (X =) 13, 15, 17, or 21 fluorine atoms. In all cases, the activation energies (Ea) measured for the loss of neutral XF-SA from the (Lg + XF-SA)7– ions are larger than for SA. From the kinetic data, the average contribution of each?>?CF2 group to Ea was found to be ~1.1 kcal mol–1, which is larger than the ~0.8 kcal mol–1 value reported for?>?CH2 groups. Based on these results, it is proposed that fluorocarbon–protein interactions are inherently stronger (enthalpically) than the corresponding hydrocarbon interactions.
Figure
?  相似文献   

14.
Novel imidazole fluorescent ionic liquids with anthracene groups (ImS-FILA) were synthesized for the first time to act as fluorescent probes. They were developed for the determination of superoxide anion radicals (O2 ?-) in an aqueous system. O2 ?- was produced by pyrogallol autoxidation. The fluorescence of ImS-FILA was quenched by superoxide anion radicals. The π-bond structure of the fluorescent molecules was oxidized and damaged. This method is very simple and sensitive. The linear range of sensitivity was 1–70 μM ImS-FILA, and the detection limit for reactive oxygen species was 0.1 μM. This method was used to detect superoxide radicals in papaya and garlic, with satisfactory results. Further work is needed to demonstrate the utility of this method in detecting reactive oxygen species in a biological aqueous system.
Figure
Reaction of fluorescent probes with O2 ?- and the fluorescence change  相似文献   

15.
Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1?min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20?μg?L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114.
Figure
The coupling of RS-CPE with TS-FF-AAS for copper detection  相似文献   

16.
A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N’-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm?1. Good linear calibration curves (R 2?>?0.99) were obtained, and the limits of detection (S/N?=?3) for the analytes were found to be in the range 1.2–13.5 ng mL?1. The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.
Graphical abstract
?  相似文献   

17.
We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s?1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L?1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.
Figure
A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.  相似文献   

18.
Biomorphic calcium phosphate (CaP) microspheres with hierarchical porous structure were synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase (HRP). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed (a) the porous structure of the CaP microspheres, (b) the effective immobilization, and (c) the retention of the conformation of HRP on CaP. The immobilized HRP was placed on a glassy carbon electrode where it underwent a direct, fully reversible, and surface-controlled redox reaction with an electron transfer rate constant of 1.96 s?1. It also exhibits high sensitivity to the reduction of H2O2. The response to H2O2 is linear in the 5.00 nM to 1.27 μM concentration range, and the sensitivity is 30357 μA?mM?1?cm?2. The detection limit (at an SNR of 3) is as low as 1.30 nM. The apparent Michaelis–Menten constant (K M app ) of the immobilized enzyme is 0.92 μM. This new CaP with hierarchical porous structure therefore represents a material that can significantly promote the direct electron transfer between HRP and an electrode, and is quite attractive with respect to the construction of biosensors.
Figure
Biomorphic calcium phosphate microspheres with hierarchical porous has been synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase to construct biosensors with high sensitivity and selectivity.  相似文献   

19.
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic–electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE–two-step injection–MEKC conditions, detection limits of 7.9–8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R 2?≥?0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108 % were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n?=?6) of 1.3–3.1 %. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.
Figure
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic–electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens in water samples followed by MEKC analysis.  相似文献   

20.
We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm?2 mM?1) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors.
Figure
Individual ZnO micro/nanowire based electrochemical biosensor was constructed. The biosensor displayed a higher sensitivity of 89.74 μA cm?2 mM?1 for uric acid detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号