首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-N codoped ZnMgO films have been prepared on glass substrates by direct current reactive magnetron sputtering. The p-type conduction could be obtained in ZnMgO films by adjusting the N2O partial pressures. The lowest resistivity was found to be 4.6 Ω cm for the p-type ZnMgO film deposited under an optimized N2O partial pressure of 2.3 mTorr, with a Hall mobility of 1.4 cm2/V s and a hole concentration of 9.6 × 1017 cm−3 at room temperature. The films were of good crystal quality with a high c-axis orientation of wurtzite ZnO structure. The presence of In-N bonds was identified by X-ray photoelectron spectroscopy, which may enhance the nitrogen incorporation and respond for the realization of good p-type behavior in In-N codoped ZnMgO films. Furthermore, the ZnMgO-based p-n homojunction was fabricated by deposition of an In-doped n-type ZnMgO layer on an In-N codoped p-type ZnMgO layer. The p-n homostructural diode exhibits electrical rectification behavior of a typical p-n junction.  相似文献   

2.
B-N codoped ZnO (ZnO:(B,N)) films were grown on quartz substrate by radio-frequency (rf) magnetron sputtering. The influence of post-annealing ambient on electrical and optical properties of ZnO:(B,N) films were investigated using Hall and Photoluminescence (PL) measurement, respectively. Electrical properties studies indicate that both post-annealing ZnO:(B,N) showed p-type conduction. However, compared with ZnO:(B,N) annealed in oxygen, the ZnO:(B,N) annealed in vacuum have low resistivity and high concentration. The PL spectra indicate that two new emission bands located at 3.303 and 3.208 eV originate from the recombination of A0X and FA related to N acceptor for the annealed p-ZnO:(B,N) in vacuum, but of A0X, FA related to Zn vacancy for the annealed p-ZnO:(B,N) in oxygen. The mechanism of influence of post-annealing on the electrical and optical properties of the ZnO:(B,N) film is discussed in this work.  相似文献   

3.
An attempt has been made to realize p-ZnO by directly doping (codoping) GaP into ZnO thin films. GaP codoped ZnO thin films of different concentrations (1, 2 and 4 mol%) have been grown by RF magnetron sputtering. The grown films on sapphire substrate have been characterized by X-ray diffraction (XRD), Hall measurement, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. XRD result shows that all the films have been preferentially oriented along (0 0 2) orientation. The decrease of full-width at half maximum (FWHM) with increase in GaP doping depicts the decrease in native donor defects. Hall measurement shows that among the three films, 2 and 4 mol% GaP doped ZnO shows p-conductivity due to the sufficient amount of phosphorous incorporation. It has been found that low resistivity (2.17 Ωcm) and high hole concentration (1.8×1018 cm−3) for 2% GaP codoped ZnO films due to best codoping. The red shift in near-band-edge (NBE) emission and donar-acceptor-pair (DAP) and neutral acceptor bound recombination (A°X) observed by room temperature and low temperature (10 K) PL, respectively, well acknowledged the formation of p-ZnO. The incorporated phosphorous in the film has been also confirmed by EDS analysis.  相似文献   

4.
Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 × 1017 cm−3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3− ions with a larger ionic radius in the O2− sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.  相似文献   

5.
Al-N codoped p-type ZnO thin films have been prepared by DC magnetron reactive sputtering reproducibly using a high-temperature (HT) homo-buffer layer. The influence of HT buffer layer deposition time (Tht) on film properties was investigated by X-ray diffraction (XRD), scanning electron micro-spectra (SEM) and Hall measurement. The Al-N codoped ZnO film was improved evidently in its crystal quality by varying the value of Tht. Results of Hall effect showed that all of the Al-N codoped ZnO thin films were p-type conduction and had resistivity mainly below 50 Ω cm. The optimum deposition time of HT buffer layer is around 3 min from the comprehensive consideration of structural, electrical, and optical properties. The obtained ZnO thin film can meet the need of application in optoelectronic devices based on ZnO.  相似文献   

6.
ZnO buffer layers were deposited on n-Si (1 0 0) substrate by rf magnetron sputtering at a lower power of 40 W. Then Ag-doped ZnO (SZO) films were deposited on buffered and non-buffered Si at a higher sputtering power of 100 W. The effects of buffer layer on the structural, electrical and optical properties of SZO films were investigated. The three-dimensional island growth process of ZnO buffer layer was discussed. The energy band diagram of p-SZO/n-Si heterojunction was constructed based on Anderson's model. Results show the ZnO buffer layer leads to better properties of SZO film, including larger grain size, smoother surface, higher carrier mobility, better rectifying behavior, lower interface state density, and weaker deep-level emission. It is because the ZnO buffer layer effectively relaxes the partial stress induced by the large lattice mismatch between SZO and Si.  相似文献   

7.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

8.
Al and N codoped ZnO thin films were grown on n-Si (100) substrate by sputtering technique. Hall effect measurements of as-grown films exhibited n-type conduction, however 500 °C Ar annealed codoped films showed p-type conductivity with a hole concentration of 9.9 × 1016 cm− 3, resistivity of 15.95 Ω-cm and hole mobility of 3.95 cm2/Vs, respectively. Codoped ZnO thin films were found to be highly c-axis oriented with good crystal quality. A neutral acceptor-bound exciton and donor-acceptor-pair emissions that appeared at room temperature photoluminescence measurement verify p-type conduction in Al and N codoped ZnO film. The current-voltage characteristics of p-n heterojunction evidently showed a diode like rectifying behaviour.  相似文献   

9.
Mn/Ga noncompensated codoped ZnO films were prepared on c-cut sapphire substrates via pulsed laser deposition. The structural, magnetic, transport, and optical properties of the films were then investigated. Addition of the Ga donor increases the electron concentration and enhances the magnetization in these films because of the net negative charge of the special noncompensated codoping, which can adjust the carrier concentration as well as the magnetic moment. Moreover, the Fermi level moves into the conduction band because of the increase in electron concentration, which results in an increase in the optical band gap value, from 3.28 eV for the undoped ZnO film to 3.61 eV for the (Mn,Ga)-codoped ZnO film.  相似文献   

10.
WOx films were prepared by reactive dc magnetron sputtering using tungsten target. Sputtering was carried out at a total pressure of 1.2 Pa using a mixture of argon plus oxygen in an effort to determine the influence of the oxygen partial pressure on structural and optical properties of the films. The deposition rate decreases significantly as the surface of the target is oxidized. X-Ray diffraction revealed the amorphous nature of all the films prepared at oxygen partial pressures higher than 1.71×10−3 Pa. For higher oxygen partial pressures, fully transparent films were deposited, which showed a slight increase in optical band gap with increasing oxygen partial pressure, while the refractive index was simultaneously decreased.  相似文献   

11.
The structural and optical properties of ZnO thin films deposited at various oxygen partial pressure and rf-power of rf magnetron sputtering were investigated. The sputtered ZnO films are mainly formed with the oxygen which was supplied from a sputtering gas; therefore the film stoichiometry can be controlled by the oxygen partial pressure and rf-power. From photoluminescence study, it was found that the wide emission band above 550 nm was observed due to an increase of oxygen vacancies when the ZnO film changed from O-rich to Zn-rich. The chemical stoichiometry of the film will help us to understand the formation mechanism of intrinsic defects in ZnO films.  相似文献   

12.
Ga-doped ZnO (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. Taguchi method was used to find the optimal deposition parameters including oxygen partial pressure, argon partial pressure, substrate temperature, and sputtering power. By employing the analysis of variance, we found that the oxygen and argon partial pressures were the most influencing parameters on the electrical properties of ZnO:Ga films. Under the optimized deposition conditions, the ZnO:Ga films showed acceptable crystal quality, lowest electrical resistivity of 2.61 × 10−4 Ω cm, and high transmittance of 90% in the visible region.  相似文献   

13.
Wurtzite zinc oxides films (ZnO) were deposited on silicon (0 0 1) and corning glass substrates using the pulsed laser deposition technique. The laser fluence, target-substrate distance, substrate temperature of 300 °C were fixed while varying oxygen pressures from 2 to 500 Pa were used. It is observed that the structural properties of ZnO films depend strongly on the oxygen pressure and the substrate nature. The film crystallinity improves with decreasing oxygen pressure. At high oxygen pressure, the films are randomly oriented, whereas, at low oxygen pressures they are well oriented along [0 0 1] axis for Si substrates and along [1 0 3] axis for glass substrates. A honeycomb structure is obtained at low oxygen pressures, whereas microcrystalline structures were obtained at high oxygen pressures. The effect of oxygen pressure on film transparency, band gap Eg and Urbach energies was investigated.  相似文献   

14.
Thin NiO films were deposited at 500 °C on n-type Si(1 1 1) by a DC reactive magnetron sputtering in a gas mixture of oxygen and argon. The ratio between the flow rates of oxygen and argon was respectively set at 1:4, 1:2, and 1:1. The dependence of structures and optical properties of NiO films were investigated using grazing incidence X-ray diffraction and spectroscopic ellipsometry in the spectral region of 1.5-5.0 eV. Ni-rich NiO films were obtained when the ratio between the flow rates of oxygen and argon was 1:4 and 1:2 in sputtering process. And when the ratio was 1:1, a relatively pure NiO film was formed. The partial pressure of oxygen could significantly influence the thickness and roughness of films. Refractive index n, extinction coefficient k, and direct gap energy and indirect gap energy of the NiO films were also subject to the influence of the partial pressure of oxygen.  相似文献   

15.
N-In codoped ZnO thin films were prepared by ion beam enhanced deposition method (IBED) and were annealed in nitrogen and oxygen ambient after deposition. The influence of post-annealing on structure, electrical and optical properties of thin films were investigated. As-deposited and all post-annealed samples showed preferential orientation along (0 0 2) plane. Electrical property studies indicated that the as-deposited ZnO film showed p-type with a sheet resistance of 67.5 kΩ. For ZnO films annealed in nitrogen with the annealing temperature increasing from 400 to 800 °C, the conduction type of the ZnO film changed from p-type to n-type. However, for samples annealed in oxygen the resistance increased sharply even at a low annealing temperature of 400 °C and the conduction type did not change. Room temperature PL spectra of samples annealed in N2 and in O2 showed UV peak located at 381 and 356 nm, respectively.  相似文献   

16.
Cu/ZnO/n+-Si structures were prepared by magnetron sputtering of a layer of ZnO thin film onto heavily doped silicon substrate, followed by thermal evaporation of a thin layer of metallic Cu. The resistive switching characteristics of Cu/ZnO/n+-Si structures were investigated as a function of oxygen partial pressure during ZnO deposition. Reproducible resistive switching characteristics were observed in ZnO thin films deposited at 20%, 33% and 50% oxygen partial pressure ratios while ZnO thin film deposited at 10% oxygen partial pressure ratio did not show resistive switching behavior. The conduction mechanisms in high and low resistance states are dominated by space-charge-limited conduction and ohmic behavior respectively, which suggests that resistive switching behaviors in such structures are related to filament formation and rupture. It is also found that the reset current decreases as oxygen partial pressure increases, due to the variation of oxygen vacancy concentration in the ZnO thin films.  相似文献   

17.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

18.
Al doped ZnO thin films are prepared by pulsed laser deposition on quartz substrate at substrate temperature 873 K under a background oxygen pressure of 0.02 mbar. The films are systematically analyzed using X-ray diffraction, atomic force microscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, z-scan and temperature-dependent electrical resistivity measurements in the temperature range 70-300 K. XRD patterns show that all the films are well crystallized with hexagonal wurtzite structure with preferred orientation along (0 0 2) plane. Particle size calculations based on XRD analysis show that all the films are nanocrystalline in nature with the size of the quantum dots ranging from 8 to 17 nm. The presence of high frequency E2 mode and longitudinal optical A1 (LO) modes in the Raman spectra suggest a hexagonal wurtzite structure for the films. AFM analysis reveals the agglomerated growth mode in the doped films and it reduces the nucleation barrier of ZnO by Al doping. The 1% Al doped ZnO film presents high transmittance of ∼75% in the visible and near infrared region and low dc electrical resistivity of 5.94 × 10−6 Ω m. PL spectra show emissions corresponding to the near band edge (NBE) ultra violet emission and deep level emission in the visible region. Nonlinear optical measurements using the z-scan technique shows optical limiting behavior for the 5% Al doped ZnO film.  相似文献   

19.
To resolve the problem of p-type doping in ZnO, nitrogen and aluminum (N-Al) codoped ZnO films were prepared by the ultrasonic spray pyrolysis (USP) technique. The structural and electrical properties of N-Al codoped ZnO films were investigated. The results demonstrate that the undoped ZnO films exhibit the preferential orientation of (002) plane, while ZnO films show high orientation of (101) plane after codoping with N and Al. The N-Al codoped ZnO films under optimum conditions show p-type conduction, with a low resistivity of 1.7×10−2Ω cm, carrier concentration of 5.09×1018 cm−3 and high Hall mobility of 73.6 cm2 V−1 s−1. A conversion from p-type conduction to n-type was observed during the increase of measurement temperature.  相似文献   

20.
N-doped p-type ZnO films were grown by plasma-free metal-organic chemical vapor deposition (MOCVD). The effect of substrate temperature on the electrical, optical, and structural properties of the N-doped ZnO films was investigated by Hall-effect, photoluminescence, X-ray diffraction measurements. The electrical properties of the films were extremely sensitive to the substrate temperature and the conduction type could be reversed in a narrow range from 380 °C to 420 °C. Based on X-ray photoelectron spectroscopy, a high compensation effect in the N-doped ZnO films grown by plasma-free MOCVD was suggested to explain the temperature-dependent phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号