首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2 . Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.  相似文献   

2.
Tungsten is widely used as deposited layer for the multi-level interconnection structures of wafers. The chemical composition of abrasive slurry plays an important role in chemical mechanical polishing (CMP) process. Removal of tungsten is driven by complex oxidation mechanisms between slurry components. The slurry for tungsten CMP generally contains oxidizer, iron catalyst, complexing agents and stabilizers in a pH adjusted solution of abrasive particles. Interaction between iron complex and H2O2 in the slurry is the main factor governing the chemical mode of material removal, oxidation potencies and kinetics.In this study, we investigate the effects of chemical additives in silica (SiO2)-based slurry on the removal rate of the tungsten film. Experiments were carried out in static batch as a preliminary study to understand and optimize chemical mechanisms in CMP-Tungsten process. Experiment designs were conducted to understand the influence of the chemical additives on the main performances of W-CMP. Used slurry, concentrated and retreated with chemical adjustments, is compared to the original slurry as a reference.  相似文献   

3.
We examine the effect of cations in solutions containing benzotriazole (BTA) and H202 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).  相似文献   

4.
We investigate the effect of chemicals on chemical mechanical polishing (CMP) of glass substrates. Ceria slurry in an ultra-low concentration of 0.25 wt. % is used and characterized by scanning electron microscopy. Three typical molecules, i.e. acetic acid, citric acid and sodium acrylic polymer, are adopted to investigate the effect on CMP performance in terms of material removal rate (MRR) and surface quality. The addition of sodium acrylic polymer shows the highest MRR as well as the best surface by atomic force microscopy after CMP, while the addition of citric acid shows the worst performance. These results reveal a mechanism that a long-chain molecule without any branches rather than small molecules and common molecules with ramose abundant-electron groups is better for the dispersion of the slurry and thus better for the CMP process.  相似文献   

5.
The anisotropic shape transformation of gold nanorods (GNRs) with H2O2 was observed in the presence of “cethyl trimethylammonium bromide” (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H2O2: Au0 → Au+, Au0 + Aun+ → 2Au3+, n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H2O2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H2O2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br ions.  相似文献   

6.
In this study several complementary methods as XRD, HRTEM, O2 and H2 adsorption, as well as H2-O2 titration were used for characterization of the metallic phase in 0.5-3.0 wt.% Pt/ZnAl2O4 catalysts. Three nanocrystalline ZnAl2O4 spinels used as a supports were prepared by the solvothermal and co-precipitation method. It was found that irrespective of the preparation method they form very good support materials with a high capacity to achieve high platinum dispersion. O2 and H2 chemisorption data showed metal dispersion up to 90% and good correspondence with HRTEM results was observed. The H2-O2 titration method may be applied for determination of Pt dispersion only in the high-loaded Pt/ZnAl2O4 catalysts. The catalytic performances of Pt supported on the prepared spinels were evaluated in the propane total oxidation reaction.  相似文献   

7.
A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O2 reaction was used to obtain rate coefficients over a wide range of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O2 mixtures diluted in N2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel-rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Under the investigated conditions the oxidation pathways for C2H4 are more complex than those prevailing at higher temperatures and lower pressures. The major differences are the importance of the hydroxyethyl (CH2CH2OH) and 2-hydroperoxyethyl (CH2CH2OOH) radicals, formed from addition of OH and HO2 to C2H4, and vinyl peroxide, formed from C2H3 + O2. Hydroxyethyl is oxidized through the peroxide HOCH2CH2OO (lean conditions) or through ethenol (low O2 concentration), while 2-hydroperoxyethyl is converted through oxirane.  相似文献   

8.
A. A. Mohamad  A. K. Arof 《Ionics》2006,12(4-5):263-268
Alkaline polymer electrolytes (ASPE) have been prepared by using poly(vinyl alcohol) (PVA) polymer and which different weight percentages of potassium hydroxide (KOH), ceramic filler (α-Al2O3), and propylene carbonate (PC) have been added. The pure PVA/H2O weight ratio (1.00:1.49), the PVA/KOH/H2O (1.00:0.67:2.22), the PVA/KOH/α-Al2O3/H2O (1.00:0.67:0.09:7.56), and PVA/KOH/α-Al2O3/PC/H2O (1.00:0.67:0.09:2.64:1.32) were studied. The hysteresis phenomena in the conductivity temperature of ASPE were investigated. The polymer electrolytes prepared were characterized using X-ray diffraction and scanning electron microscopy.  相似文献   

9.
The surface reaction and desorption of sulfur on Rh(1 0 0) induced by O2 and H2O are investigated with X-ray photoelectron spectroscopy (XPS) technique. The Rh(1 0 0) sample covered with atomic sulfur is prepared by means of the exposure to H2S gas, and subsequently the sample is annealed under O2 or H2O atmosphere. The XPS results show that atomic sulfur adsorbed on Rh(1 0 0) reacts with O2 and desorbs from the surface at 473 K or more. On the other hand, atomic sulfur can not be removed from Rh(1 0 0) surface by H2O at any temperature.  相似文献   

10.
Low-temperature growth (600 °C) of α-Al2O3 coatings on the stainless steel substrate by double glow plasma technique was achieved. The compositions and microstructures of the coatings prepared at different oxygen flow rates were characterized, respectively, by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometry. A phenomenological mechanism for the formation of the Al2O3 ceramic coatings during the oxidation process was proposed on the basis of the experimental results. It was obvious that the oxygen flow rates had a great effect on the surface structure of the prepared Al2O3 coatings. The dense and smooth Al2O3 coatings were prepared at the oxygen flow rate of 15 sccm. In addition, the correlations between the mechanical properties of Al2O3 coating and oxygen flow rates were also discussed. The coating prepared at 15 sccm oxygen flow rate exhibited the best mechanical properties with a maximum hardness of 31 GPa and elastic modulus of 321 GPa. The corresponding critical load of scratch adherence for this sample was 47 N.  相似文献   

11.
Nanoparticles of magnetite (Fe3O4) and hematite (α-Fe2O3) have been prepared by a simple microwave heating method using FeCl3, polyethylene glycol and N2H4·H2O. The amount of N2H4·H2O has an effect on the final phase of Fe3O4. The morphology of α-Fe2O3 was affected by the heating method. Crystalline α-Fe2O3 agglomerates were formed immediately at room temperature and most of these nanoparticles within agglomerates show the same orientation along [110] direction. After microwave heating, ellipsoidal α-Fe2O3 nanoparticles were formed following an oriented attachment mechanism. Both Fe3O4 and α-Fe2O3 nanoparticles exhibit a small hysteresis loop at room temperature.  相似文献   

12.
Microwave-assisted synthesis of SrFe12O19 hexaferrites   总被引:1,自引:0,他引:1  
Ultra-fine and homogeneous SrFe12O19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO3)3·9H2O, Sr(NO3)2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.  相似文献   

13.
The process known as “wet digestion” is widely used in analytical chemistry as the most common way of dissolving solid samples for elemental spectrochemical analysis. Wet digestion involves the use of oxidizing reagents and acids–mainly HNO3, H2O2, H2SO4, HClO4, and other complementary acid reagents such as HF, HCl, or their mixtures. Wet digestion has become popular and attractive to users in part owing to the application of modern equipment with new technologies such as temperature-controlled heating blocks, microwave systems, and automated digestion systems, among others. Nonetheless, the use of modern, sophisticated instruments does not change the physical and chemical foundations of the classic chemical process. Until now, simplified equations have been used to explain this process. However, fundamental chemical mechanisms and thermodynamic concepts have been commonly left aside. In this work, the acid digestion of samples has been approached based on the chemical reactions, detailing the role and the effect of main reagents and intermediaries. The reactions that can occur during the digestion process have been specified considering the fundamental thermodynamic properties of the reagents used, especially the oxidizing reagents HNO3 and H2O2. This article will be a beneficial resource for students, instructors, and professionals alike.  相似文献   

14.
The layer structures of H8Si8O12 molecules on highly oriented pyrolitic graphite have been investigated by scanning tunneling microscopy. Two kinds of ordered assemblies of H8Si8O12 monolayers are observed, with a unit cell of 6.5 Å × 6.5 Å and 7.2 Å × 9.4 Å, respectively. On the basis of the shapes and sizes of the H8Si8O12 STM images and the heights of the H8Si8O12 monolayers, H8Si8O12 can be adsorbed with one face of its cage structure in contact with the substrate surface or with a tilted orientation.  相似文献   

15.
The thermally stimulated luminescence from XB2O4 (X=Ca,Sr,Ba) has been investigated. The results on CaB2O4 and SrB2O4 are being reported here for the first time. In both cases, the emission is found to be quite intense, contrary to the case with BaB2O4. The presence of two peaks in the glow curves is noted over the temperature range of 300-570 K. The emission spectra corresponding to both the peaks have been observed to be identical, consisting of two broad emissions, one in the UV and other in the blue-green regions. The emission is apparently quite different from that of BaB2O4 in which case only very weak emission spreading over a broad wavelength range around 410 nm is observed. This result has been understood in terms of the overlap between the excitation and the emission spectra.  相似文献   

16.
Blue phosphors Ca1 − xAl2O4: xEu2+ were prepared by high temperature solid-state method. Their structure, morphology and luminescent properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectroscopy. The effect of different amounts of fluxing agent H3BO3 on structure, morphology and luminescent properties of blue phosphors Ca1 − xAl2O4: xEu2+ luminous intensity caused by different amount of H3BO3 was also investigated. The amount of H3BO3 doped Ca1 − xAl2O4: xEu2+ in optimal luminous intensity had been determined. The results showed that both the excitation and emission spectra of samples were all broad bands, and that the peak of emission spectra was near 442 nm, which was corresponding to the 4f65d → 4f7 transition of Eu2+ illuminating blue light. Ca1 − xAl2O4: xEu2+ (x = 3.5 mol%) could be gained with good morphology and the best luminous intensity when H3BO3 mass ratio was 0.5 wt%.  相似文献   

17.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

18.
A novel flower-shaped Bi2O3 superstructure has been successfully synthesized by calcination of the precursor, which was prepared via a citric acid assisted hydrothermal process. The precursor and Bi2O3 were characterized with respect to morphology, crystal structure and elemental chemical state by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was shown that both the precursor and Bi2O3 flower-shaped superstructure were constructed of numerous nanosheets while the nanosheets consisted of a great deal of nanoparticles. Furthermore, key factors for the formation of the superstructures have been proposed; a mechanism for the growth of the superstructure has been presented based on the FESEM investigation of different growth stages.  相似文献   

19.
ABSTRACT

Effects of (H2O)n (n?=?1–3) on the H2O2?+?HO?→?HO2?+?H2O reaction have been investigated by the reactions of H2O2L(H2O)n (n?=?1–3)?+?HO and H2O2?+?HOL(H2O)n (n?=?1–3) at the CCSD(T)/CBS//M06-2X/aug-cc-pVTZ level of theory, coupled with rate constant calculations by using canonical variational transition state theory. Interestingly, for the former reactions, one-step process and stepwise mechanism are involved, where one-step processes occurring though cage-like hydrogen bonding network complexes and the transition states are favourable. Due to larger effective rate constants, these favourable processes are also favourable than the corresponding latter reactions. Meanwhile, the catalytic effect of (H2O)n (n?=?1–3) is mainly taken from water monomer, because the effective rate constant (k'(R_WM2)) of H2O2···H2O?+?HO reaction is, respectively, larger by 3, 6–10 orders of magnitude than that of H2O2···(H2O)2?+?HO (k'(R_WD1)) and H2O2···(H2O)3?+?HO (k'(R_WT1)) reactions. Furthermore, the enhancement factor of water molecular (k'(R_WM2)/ktot) is only 0.28% at 240?K, while at high temperature (such as at 425?K), the positive water vapour effect enhances up to 27.13%. This shows that at high temperatures the positive water effect is obvious under atmospheric conditions.  相似文献   

20.
Solid state mechanical activation method was applied for surface modification of LiMn2O4 by Li-M-O (M = Co, Co+Ni) and for preparation of composite mixed LiMn2O4/LiCoO2 cathode materials. Pristine LiMn2O4 was ground with correspondent precursors (for coating) or with LiCoO2 (for composites) in high-energy planetary mills and then heat treated at different temperatures. As prepared materials were studied by XRD, 7Li MAS NMR spectroscopy, XPS, SEM and electrochemical cycling. It has been shown that both ‘core-shell’ and composite materials prepared by mechanochemical process are characterized by superior electrochemical performance due to smaller particles and chemical modification of LiMn2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号