首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper reports the surface modification of a biocompatible poly ?-caprolactone (PCL) film treated by atmospheric cold plasma (ACP) with reactive gases. The change in wettability and surface morphology of the PCL film after the plasma treatment with the reactive gases (Ar, H2, N2 and O2) were determined using contact angle and surface roughness measurements. The chemical bonding states and molecular vibration modes of the activated organic groups on the polymer surface were examined by X-ray photoelectron spectroscopy and Fourier-transformation infrared techniques. The surface of the ACP-treated PCL films was also examined for their in vitro cell attachment and proliferation using human prostate epithelial cells (HPECs). The increase in the hydrophobicity of the Ar + H2 plasma-treated PCL film resulted in a lower cell loading in the initial step of cell culture as well as a decrease in the level of cell attachment and proliferation compared with the pristine film. However, the hydrophilic properties of the Ar + N2, Ar and Ar + O2 plasma-treated PCL film improved the adhesion properties. Therefore, the Ar + N2, Ar and Ar + O2 plasma-treated PCL films showed a better cell distribution and growth than that of the pristine PCL film. The ACP-treated PCL film is potentially useful as a suitable scaffold in biophysics and bio-medical engineering applications.  相似文献   

2.
The results of the structural and magnetic studies of the epitaxial structure prepared during the simultaneous evaporation from two iron and silicon sources on an atomically pure Si(111)7 × 7 surface at a substrate temperature of 150°C have been presented. The epitaxial structure has been identified as a single-crystal Fe3Si silicide film with the orientation Si[111]‖Fe3Si[111] using methods of the X-ray structural analysis, transmission electron microscopy, and reflection high-energy electron diffraction. It has been established that the epitaxial Fe3Si film at room temperature has magnetic uniaxial anisotropy (H a = 26 Oe) and a relatively narrow uniform ferromagnetic resonance line (ΔH = 11.57 Oe) measured at a pump frequency of 2.274 GHz.  相似文献   

3.
Boron-carbon thin films have been successfully deposited on Si (111) from the synchrotron radiation induced decomposition of the nido-2,3-diethyl-dicarbahexaborane, (CH3CH2)2C2B4H6. There are indications that molecular precursor states to complete dissociation exist, and that dissociation is the rate limiting step. As with deposition of boron from decaborane, there is an activation barrier to dissociation of diethylcarborane on Si (111). The composition of the growing film, as determined by the boron to carbon ratio, is strongly dependent upon the boron concentration at the surface of the substrate. The boron concentration of the film increases with increasing film thickness.Part one appeared in [1]  相似文献   

4.
Silicon dioxide films were prepared on p-type Si (1 0 0) substrates by sol electrophoretic deposition (EPD) using tetraethylorthosilicate (TEOS) at low temperature. According to the variation of sol dipping conditions, we estimated the characteristics of SiO2 films, such as composition, surface morphology, wet etch rate, breakdown voltage, etc. The growth rate of the film increased linearly with increasing TEOS quantity in solution. It increased exponentially with the increase in deposition time, and the film thickness was saturated at approximately 200 nm on hydrophilic Si surface after more than 6 days. The growth rate of the EPD SiO2 films on the hydrophobic Si surface was much lower than that of the film on the hydrophilic Si surface.  相似文献   

5.
Permalloy (Py) films were deposited on Si(111) or Corning 0211 glass substrates. There were two deposition temperatures: T s=room temperature (RT) and T s=270°C. The film thickness (t f) ranges from 10 to 130 nm. The crystal structure properties of the films were studied by X-ray diffraction and transmission electron microscopy. Mechanical properties (including Young’s modulus E f and hardness H f) of each film were measured by the nanoindentation (NI) technique. E f of the Py/Si(111) films was checked again by the laser induced surface acoustic wave (LA-SAW) technique. It was found that the NI technique is best suited for the measurements of E f and H f, but only when the sample belongs to the (soft film)/(soft substrate) system, such as the Py/glass film. For the (soft film)/(hard substrate) system, such as the Py/Si(111) film, the NI technique often provides higher values of E f and H f than expected. The anomalous phenomenon, associated with the NI technique may be related to the anisotropic crystal structures in the Py films on different kinds of substrates. From this study, we conclude that [E f of Py/Si(111)]>[E f of Py/glass] and [H f of Py/Si(111)]>[H f of Py/glass]. The good mechanical properties of the Py/Si(111) film make it a better candidate for recording head applications.  相似文献   

6.
The atomic structure of thin iron silicide film, grown epitaxially on the Si(111) surface, has been analyzed by means of the three-dimensional RHEED Patterson function analysis. The iron-silicide-terminated surface with (2 × 2) periodicity has been prepared by a solid-phase epitaxy method. 2 ML of Fe were deposited on the Si(111)-(7 × 7) surface and annealed at 500°C. Three-dimensional Patterson function was calculated from series of φ-scanned RHEED intensity distributions converted to the k-space. The resulting model of γ-FeSi2 structure consists of two silicide layers faulted to each other with three relaxed Si adatoms above the H3 site.  相似文献   

7.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

8.
A thin iron film deposited at the rate of 103 nm/sec on the Si(001) surface and a sandwich structure silicon/iron/Si(111) are studied by Surface Magneto-Optic Kerr Effect, High Resolution Electron Microscopy and X-ray Photoelectron Microscopy methods. The phases present in the structures are identified. Both structures are non-uniform. The ultra-fast-deposited film is magnetically hard (H c=45 Oe), it contains the silicide Fe5Si3. The XPS line shift by +0.55 eV with respect to the pure iron 2p 3/2 level is attributed to Fe5Si3. The cross-section image of the sandwich structure shows the presence of enhanced-intermixing channels crossing the Si-rich layer. Iron atoms are the main diffusion species both at the Fe/Si(111) and Si/Fe interfaces. The nature of the volume defect and internal stresses in the transforming iron silicides and their effects on material intermixing and film growth process are discussed.  相似文献   

9.
Auger-electron spectroscopy, electron-energy loss spectroscopy, low-energy electron diffraction, and atomic-force microscopy are employed to investigate the growth mechanism, composition, structural and phase states, and morphology of Cu films (0.1–1 nm thick) deposited on a Si(001)-2 × 1 surface at a lower temperature of Cu evaporation (900°C) and room temperature of a substrate. The Cu film phase is shown to start growing on the Si(001)−2 × 1 surface after three Cu monolayers (MLs) are condensed. It has been revealed that atoms of Cu and Si(001) are mixed, a Cu2Si film phase is formed, and, thereafter, Cu3Si islands arise at a larger coating thickness. Annealing of the first Cu ML leads to reconstruction of the Si(001)-1 × 1-Cu surface layer, thereby modifying the film growth mechanism. As a consequence, the Cu2Si film phase arises when the thickness reaches two to four MLs, and bulk Cu3Si silicide islands begin growing at five to ten MLs. When islands continue to grow, their height and density reach, respectively, 1.5 nm and 2 × 1011 cm−2 and the island area is 70% of the substrate surface at a thickness of ten MLs.  相似文献   

10.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

11.
The phase composition, orientation, substructure, and morphology of the films formed during pulsed photon treatment of a single-crystal Si surface by xenon lamp irradiation (λ = 0.2–1.2 μm) and polycrystalline Si films on SiO2-Si in a gaseous atmosphere (C3H8)0.2(C4H10)0.8 are investigated using the methods of transmission electron microscopy, high-energy electron diffraction, atomic force microscopy, and IR-spectroscopy. The irradiation time (the duration of the pulse packet) varied from 1.5 to 2.0 s, which corresponded to variations in the incident’s irradiation energy (E p ) from 215 to 285 J · cm−2. The threshold value of E p was determined. The films of SiC and Si are characterized by a nanocrystalline substructure and biaxial texture, corresponding to different deviations of grains from parallel epitaxial orientation. The portion of epitaxially oriented grains rising to the film surface is increasing with an increase in E p and the film thickness. Under the conditions necessary for the formation of a eutectic melt in the near-surface zone, the crystallization yielding the formation of a uniaxial texture takes place. During the synthesis on doped poly-Si films the forming SiC film inherits the texture of the layered substructure of the initial Si’s film blocks.  相似文献   

12.
Epitaxial Si growth at low temperatures (500–800 °C) by atmospheric pressure plasma chemical vapor deposition has been investigated. Silicon films are deposited on (001) Si wafers using gas mixtures containing He, H2, and SiH4. The effects of deposition parameters (composition of reactive gases, very high frequency (VHF) power, and substrate temperature) on film properties are investigated by reflection high-energy electron diffraction, atomic force microscopy, cross-sectional transmission electron microscopy, and plasma emission spectroscopy. It is found that epitaxial temperature can be reduced by increasing VHF power, and that an optimum range of VHF power exists for Si epitaxy, depending on the substrate temperature and the composition of the reactive gases. The result of the H2 concentration dependence of Hα emission intensity, shows that hydrogen atoms generated in the atmospheric pressure plasma play an important role in Si epitaxial growth. Under the optimized growth conditions, defect-free epitaxial Si films (as observed by transmission electron microscopy) with excellent surface flatness are grown at 500 °C with an average growth rate of approximately 0.25 μm/min. PACS 81.05.Cy; 81.15.Gh; 68.55.Jk  相似文献   

13.
本文通过密度泛函方法计算6H-SiC(0001)表面对氧分子和水分子的吸附. 在6H-SiC(0001)表面上吸附的O2分子自发地解离成O*,并被吸收在C与Si原子之间的空位上. 吸附的H2O自发地分解成OH*和H*,它们都被吸附在Si原子的顶部,OH*进一步可逆地转化为O*和H*. H*可以使Si悬键饱和并改变O*的吸附类型,并进一步稳定6H-SiC(0001)表面并防止其转变为SiO2.  相似文献   

14.
利用机械-化学方法同时实现硅表面的图形化和功能化. 在芳香烃重氮盐(C6H5N2BF4)中用金刚石刀具刻划单晶硅(100),使单晶硅表面的Si-O键断裂,形成硅的自由基,进而它们与溶液中含有的有机分子共价结合以形成自组装单层膜. 用原子力显微镜对自组装前后的表面形貌进行表征,用飞行时间二次离子质谱和红外光谱对自组装单层膜进行检测和分析,通过确认C6H5离子的存在证明自组装单层  相似文献   

15.
《Current Applied Physics》2001,1(2-3):129-132
We synthesized N-carbazolylalkyl (ethyl, propyl, butyl, hexyl) aniline which has carbazole and aniline functional group together. Poly(N-N-carbazolylalkyl)aniline) has been synthesized by electrochemical polymerization in an acetonitrile solution containing 1 M H2SO4 on the platinum electrode. Polymer film showed reversible process in redox reaction and typical oxidation of aniline group. Poly(N-N-carbazolylhexyl)aniline) (PNCHA) showed clearly two oxidation peaks at around 0.65 and 0.75 V during electropolymerization. The color of poly(N-N-carbazolylalkyl)aniline) changed from transparent light-green in reduction state to dark green in oxidation state.  相似文献   

16.
In this work, we present an alternative route to prepare silver hexacyanoferrate(II)/polyaniline (PANI) composite thin films. Differently from the electrochemical method, used to synthesize the conducting polymer film on a electrode surface, this new chemical route makes use of dialysis membrane as a solid support to synthesize the silver hexacyanoferrate(III) compound, and subsequently uses this composite membrane as oxidizing agent to polymerize the aniline monomer. The spectroscopic (UV-vis and IR region) and electrochemical characterization (cyclic voltammetry) indicates that the polymeric composite remains optically active and conductive. The X-ray analysis shows that the composite membrane/Ag3[FeIII(CN)6] has an crystalline structure that can be assigned to the Ag3[FeIII(CN)6] structure, and after reaction with aniline solution it became less crystalline. Additionally the SEM measurements shown that the reaction of silver ions with hexacyanoferrate(III) across the membrane results in a well defined and aliened Ag3[FeIII(CN)6] crystals and when this crystalline compound reacts with aniline monomer silver wire of 100 nm of diameter by 6 μm longer are formed together with the conducting polymer polyaniline/Agx[FeII(CN)6] composite.  相似文献   

17.
康健  肖长永  熊艳云  冯克安  林彰达 《物理学报》1999,48(11):2104-2109
用高分辨率电子能量损失谱方法研究了原子H与被C2H2吸附的Si(100)界面的相互作用.结果显示,在Si(100)界面上,Si—Si二聚化键和C2H2中的C—C键被H原子打开,它们分别形成Si—H,C—H键.用AM1量子化学方法,计算了C2H2和C2H4在Si(100)上的吸附结构,指出了C2H2关键词:  相似文献   

18.
Polyaniline (PANi), poly(2-iodoaniline) (PIANi), and poly(aniline-co-2-iodoaniline) (co-PIANi) were synthesized using cyclic voltammetry in acetonitrile solution containing tetrabuthylammonium perchlorate (TBAP) and perchloric acid (HClO4) on 304-stainless steel electrodes. Adherent and black polymer films were obtained on the electrodes. The structure and properties of these polymer films were characterized by FTIR and UV-vis spectroscopy and electrochemical method. The corrosion performance of PANi, PIANi, and co-PIANi coated electrodes were investigated in 0.5 M hydrochloric acid (HCl) solutions by potentiodynamic polarization technique, open circuit potential-time curves and electrochemical impedance spectroscopy, EIS. It was found that the PANi film could provide much better protection than PIANi, and co-PIANi and PANi films have barrier property as well as acting as passivator. On the other hand PIANi and co-PIANi films are acting as barrier coatings which were related with the prevention of cathodic reaction taking place at metal\electrolyte interface. EIS measurement shows that every coating gives protection efficiency of greater than 75% after 48 h of immersion time in corrosive test solution.  相似文献   

19.
The tribological properties, such as coefficient of friction, adhesion and wear durability of an ultra-thin (<10?nm) dual-layer film on a silicon surface were investigated. The dual-layer film was prepared by dip-coating perfluoropolyether (PFPE), a liquid polymer lubricant, as the top layer onto a 3-glycidoxypropyltrimethoxy silane self-assembled monolayer (epoxy SAM)-coated Si substrate. PFPE contains hydroxyl groups at both ends of its backbone chain, while the SAM surface contains epoxy groups, which terminate at the surface. A combination of tests involving contact angle measurements, ellipsometry, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) was used to study the physical and chemical properties of the film. The coefficient of friction and wear durability of the film were investigated using a ball-on-disk tribometer (4?mm diameter Si3N4 ball as the counterface at a nominal contact pressure of ~330?MPa). AFM was used to investigate the adhesion forces between a sharp Si3N4 tip and the film. This dual-layer film had a very low coefficient of friction, adhesion and wear when compared to epoxy SAM-coated Si only or bare Si surface. The reasons for the improved tribological performance are explained in terms of the lubrication characteristics of PFPE molecules, low surface energy of PFPE, covalent bonding between PFPE and epoxy SAM coupled with reduced mobile PFPE. The low adhesion forces coupled with high wear durability show that the film has applications as a wear resistant and anti-stiction film for microcomponents made from Si.  相似文献   

20.
HfO2 films were grown by atomic layer deposition from HfCl4 and H2O on Si(1 0 0), Si(1 1 1) and amorphous SiO2 substrates at 180-750 °C and the effect of deposition temperature and film thickness on the growth rate and optical properties of the film material was studied. Crystallization, texture development and surface roughening were demonstrated to result in a noticeable growth rate increase with increasing film thickness. Highest surface roughness values were determined for the films deposited at 350-450 °C on all substrates used. The density of the film material increased with the concentration of crystalline phase but, within experimental uncertainty, was independent of orientation and sizes of crystallites in polycrystalline films. Refractive index increased with the material density. In addition, the refractive index values that were calculated from the transmission spectra depended on the surface roughness and crystallite sizes because the light scattering, which directly influenced the extinction coefficient, caused also a decrease of the refractive index determined in this way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号