首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jian Li 《Applied Surface Science》2006,252(6):2229-2234
A super-hydrophobic surface was obtained on a three-dimensional (3D) polyvinylidene fluoride (PVDF) macroporous film. The porous films were fabricated through self-assembled silica colloidal templates. The apparent water contact angle of the surface can be tuned from 106° to 153° through altering the sintering temperature and the diameter of the colloidal templates. A composite structure of micro-cavities and nanoholes on the PVDF surface was responsible for the super-hydrophobicity. The wettability of the porous surfaces was described by the use of the Cassie-Baxter model and Wenzel's equation.  相似文献   

2.
Y. Zhou  X. Song  E. Li  G. Li  S. Zhao  H. Yan 《Applied Surface Science》2006,253(5):2690-2694
Control of wettability is of significance in industry as well as our daily live. Amorphous carbon (a-C) films with nanostructured surface were deposited on silicon and glass substrates at different substrate temperatures through a magnetron sputtering technique. The microstructures of the a-C films were studied by SEM and XPS, which indicate that the surface of the a-C films deposited at room temperature are smooth due to their much dense sp3-bonded carbon, while they turn to be more porous graphite-like structure with elevated deposition temperature. The water contact angle (CA) measurements show that these pure carbon films exhibit different wettability, ranging from hydrophilicity with CA less than 40° to super-hydrophobicity with CA of 152°, which reveal that the surface wettability of a-C films can be controlled well by using nanostructures with various geometrical and carbon state features. The graphite-like carbon film deposited at 400 °C without any modification exhibits super-hydrophobic properties, due to the combining microstructures of spheres with nanostructures of protuberances and interstitials. It may have great significance on the study of wettability and relevant applications.  相似文献   

3.
A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 ± 1.2°, and the sliding angle was 5°. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.  相似文献   

4.
Preparation and properties of super-hydrophobic coating on magnesium alloy   总被引:3,自引:0,他引:3  
The super-hydrophobic coating was successfully fabricated on the surface of magnesium alloy AZ31 by chemical etching and surface modification. The surface morphologies, compositions, wettability and corrosion resistance of the coating were investigated with SEM, XPS, contact angle measurement and electrochemical method, respectively. It shows that the rough and porous micro-nano-structure was presented on the surface of magnesium alloy, and the contact angle could reach up to 157.3 ± 0.5° with sliding angle smaller than 10°. The super-hydrophobic coating showed a long service life. The results of electrochemical measurements showed that anticorrosion property of magnesium alloy was improved. The super-hydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it finds that only about 10% of the water surface is contacted with the metal substrate and the rest 90% is contacted with the air cushion.  相似文献   

5.
Superhydrophobic surfaces based on dandelion-like ZnO microspheres   总被引:1,自引:0,他引:1  
This study presents a simple method to fabricate superhydrophobic surface based on ZnO nanoneedles. ZnO nanoneedles had been constructed on zinc layers by immersing in an aqueous NH4OH solution at 80 °C. The ZnO films were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The ZnO films exhibited excellent superhydrophilicity (contact angle for water was 0°), while they changed wettability to superhydrophobicity with a water contact angle greater than 150° after further chemical modification with n-dodecanoic acid. The procedure reported here only needs readily available reagents and laboratory equipments, which can be applied to various substrates of any size and shape.  相似文献   

6.
A simple new approach was developed to obtain a super-hydrophobic PVC film from a natural lotus leaf using the nanocasting method. SEM shows that compared with a common smooth PVC film, a lotus-leaf-like surface structure was clearly observed on the super-hydrophobic PVC film. The water contact angle and rolling-off angle on the as-prepared lotus-leaf-like PVC film were 157 ± 1.8° and 3 ± 0.6°, respectively. The samples were kept at temperatures between 5 and 40 °C in the ambient atmosphere for 2 months, and no decrease in water contact angle was observed, nor was contamination observed.  相似文献   

7.
Two kinds of super-hydrophobic cotton textiles were prepared via dip-coating cotton textiles with nano-silica suspensions, and the cotton textiles exhibits high contact angle more than 160° and low sliding angle lower than 4°. A friction method was used to evaluate the durability of the as-prepared super-hydrophobic cotton textiles, the results shows that one of the as-prepared super-hydrophobic cottons exhibits better stability property against friction, and its contact angle remained higher than 150° and sliding angle remained lower than 15° after 1000 times friction. SEM analysis shows the reduction of hydrophobic property was resulted from the damage of surface structure during friction cycle.  相似文献   

8.
In this article, both highly hydrophobic and oleophilic foam were fabricated by coating inner surface of polyurethane (PU) foam with a super-hydrophobic film. The contact angle of the foam is large as 152.2° for water, and 0° for kerosene. The foam can absorb kerosene selectively from kerosene-water mixture and be regenerated easily. The foam may be used to reclaim oil from polluted natural water area resulted from shipwreck or leakage.  相似文献   

9.
Control on the wettability of solid state materials is a classical and key issue in surface engineering. Optically transparent methyltriethoxysilane (MTES)-based silica films with water sliding angle as low as 9° were successfully prepared by two-step sol-gel co-precursor method. The emphasis is given to the effect of trimethylethoxysilane (TMES) as a co-precursor on water sliding behavior of silica films. The coating sol was prepared with molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), acidic water (0.01 M, oxalic acid) and basic water (12 M, NH4OH) kept constant at 1:12.73:3.58:3.58 respectively, and the molar ratio of TMES/MTES (M) was varied from 0 to 0.22. The static water contact angle as high as 120° and the water sliding angle as low as 9° was obtained by keeping the molar ratio (M) of TMES/MTES at 0.22. When the modified films were cured at temperature higher than 280 °C, the films became superhydrophilic. Further, the humidity study was carried out at a relative humidity of 90% at 30 °C over 60 days. We characterized the water repellent silica films by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, humidity tests and static and dynamic water contact angle (CA) measurements.  相似文献   

10.
Control on the wettability of solid materials by liquid is a classical and key issue in surface engineering. Optically transparent water-repellent silica films have been spin-deposited on glass substrates at room temperature (∼27 °C). The wetting behavior of silica films was controlled by surface silylation method using dimethylchlorosilane (DMCS) as a silylating reagent. A coating sol was prepared by keeping the molar ratio of methyltrimethoxysilane (MTMS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:8.8:2.64 respectively, with 4 M NH4OH as a catalyst throughout the experiments and the amount of DMCS in hexane was varied from 0 to 12 vol.%. It was found that with an increase in vol.% of DMCS, the water contact angle values of the films increased from 78° to 136°. At 12 vol.% of DMCS, the film shows static water contact angle as high as 136° and water sliding angle as low as 18°. The hydrophobic silica films retained their water repellency up to a temperature 295 °C and above this temperature the films show superhydrophilic behavior. These results are compared with our earlier research work done on silylation of silica surface using hexamethyldisilazane (HMDZ) and trimethylchlorosilane (TMCS). The hydrophobic silica films were characterized by taking into consideration the Fourier transform infrared (FT-IR) spectroscopy, thermo gravimetric-differential thermal (TG-DT) analyses, scanning electron microscopy (SEM), atomic force microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

11.
The water contact angle (WCA) of nanocrystalline TiO2 films was adjusted by fluoroalkylsilane (FAS) modification and photocatalytic lithography. FAS modification made the surface hydrophobic with the WCA up to ∼156°, while ultraviolet (UV) irradiation changed surface to hydrophilic with the WCA down to ∼0°. Both the hydrophobicity and hydrophilicity were enhanced by surface roughness. The wettability can be tailored by varying the concentration of FAS solution and soaking time, as well as the UV light intensity and irradiation time. Additionally, with the help of photomasks, hydrophobic-hydrophilic micropatterns can be fabricated and manifested via area-selective deposition of polystyrene particles.  相似文献   

12.
Nanocrystalline SnO2 thin films were deposited by simple and inexpensive chemical route. The films were characterized for their structural, morphological, wettability and electrochemical properties using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy techniques (SEM), transmission electron microscopy (TEM), contact angle measurement, and cyclic voltammetry techniques. The XRD study revealed the deposited films were nanocrystalline with tetragonal rutile structure of SnO2. The FT-IR studies confirmed the formation of SnO2 with the characteristic vibrational mode of Sn-O. The SEM studies showed formation of loosely connected agglomerates with average size of 5-10 nm as observed from TEM studies. The surface wettability showed the hydrophilic nature of SnO2 thin film (water contact angle 9°). The SnO2 showed a maximum specific capacitance of 66 F g−1 in 0.5 Na2SO4 electrolyte at 10 mV s−1 scan rate.  相似文献   

13.
A layer of flower-like super-hydrophobic film was fabricated on pure Mg surface by chemical etching in H2SO4, H2O2 and subsequent immersion in stearic acid (CH3(CH2)16COOH) ethanol solution. The super-hydrophobic surface showed a static water contact angle of 154° with the sliding angle of about 3°. With scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FT-IR) spectrometer, the microstructure and composition of the sample were analyzed. Results showed that the flower-like structure and the bonding of the CH3(CH2)16COO on Mg surface can be responsible for the superior water-repellent property. Electrochemical impedance spectroscopy revealed that the transfer resistance of super-hydrophobic surface was increased about four times than bare Mg after one-hour immersion in 0.1 mol/L NaCl solution.  相似文献   

14.
Superhydrophobic functionalized cupric hydroxide (Cu(OH)2) nanotube arrays were prepared on copper foils via a facile alkali assistant surface oxidation technique. Thus nanotube arrays of Cu(OH)2 were directly fabricated on the surface of copper foil by immersing in an aqueous solution of NaOH and (NH4)2S2O8. The wettability of the surface was changed from surperhydrophilicity to superhydrophobicity by chemical modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS). The morphologies, microstructures, crystal structure, chemical compositions and states, and hydrophobicity of the films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. It was found that the rough structure of the surface helped to magnify the wettability. The static contact angle (CA) for water is larger than 160° and the contact angle hysteresis (CAH) is lower than 5° on the modified surface. The high roughness of the nanotube arrays along with the generated C-F chains by chemical modification contributed to the improved superhydrophobicity. The present research is expected to be significant in providing a new strategy for the preparation of novel multifunctional materials with potential industrial applications on copper substrates.  相似文献   

15.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

16.
Non-wettable surfaces with high contact angles and facile sliding angle of water droplets have received tremendous attention in recent years. The present paper describes the room temperature (∼27 °C) synthesis of dip coated water repellent silica coatings on glass substrates using iso-butyltrimethoxysilane (iso-BTMS) as a co-precursor. Emphasis is given to the influence of the hydrophobic reagent (iso-BTMS) on the water repellent properties of the silica films. Silica sol was prepared by keeping the molar ratio of tetraethoxysilane (TEOS) precursor, methanol (MeOH) solvent, water (H2O) constant at 1:16.53:8.26 respectively, with 0.01 M NH4F throughout the experiment and the molar ratio of iso-BTMS/TEOS (M) was varied from 0 to 0.965. The effect of M on the surface structure and hydrophobicity has been researched. The static water contact angle values of the silica films increased from 65° to 140° and water sliding angle values decreased from 42° to 16° with an increase in the M value from 0 to 0.965. The water repellent silica films are thermally stable up to a temperature of 280 °C and above this temperature the film shows hydrophilic behavior. The water repellent silica films were characterized by the Fourier Transform Infrared (FT-IR) Spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), % of optical transmission, thermal and chemical aging tests, humidity tests, static and dynamic water contact angle measurements.  相似文献   

17.
Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6° water contact angle and 2° tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.  相似文献   

18.
This paper demonstrated a convenient method to prepare water-soluble hydrophobic agent and create super-hydrophobic film on the basic material of phosphating film and electroless Ni-P composite coating on carbon steels. Water contact angles and rolling angles of super-hydrophobic films were 155-168° and 2-3° on phosphating films, respectively, 145-155° and 15-20° on electroless Ni-P composite coatings, respectively. This water-soluble hydrophobic agent was white latex and had lots of micro-particles suspending in it. The thickness of the single-layer super-hydrophobic film with good corrosion resistance and stability was about 2-3 μm. The microstructure of super-hydrophobic film was discussed using XRD, EDS, optical and electronic microscope as analytical methods. This kind of super-hydrophobic film had a great many micro-particles dispersing in the surface, which contained F and Si and greatly increased the roughness of the surface.  相似文献   

19.
In the present work, super-hydrophobic surfaces based on porous silicon (PS) were constructed by the self-assembled molecular films and their tribological properties were investigated. A simple chemical etching approach was developed to fabricate PS with the certain rough microstructure surface, which can be observed by the environmental scanning electron microscopy (ESEM). The hydrocarbon and fluorocarbon alkylsilane molecular films were self-assembled on PS, which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. In contrast to PS, the alkylsilane molecular films modified PS (mPS) were super-hydrophobic since the apparent water contact angle (CA) exceeded 160°. The tribological properties of PS and the mPS were investigated by a ball-on-disk tribometer during the processes of different sliding velocities and normal loads. The experimental results showed that the alkylsilane molecular films could decrease the friction coefficient. Due to the difference of chain structure and functional groups, the fluorinated alkylsilane films are better candidates for improving the hydrophobicity and lubricating characteristics of PS comparing to the non-fluorinated ones. The carbon chain length of alkylsilane molecules self-assembling on the Si or PS substrates could have little effects on the hydrophobic properties and the tribology performances.  相似文献   

20.
Polyamide 6 (PA6) nanofibers were prepared from formic acid solutions by using electrospinning technique. The fibers were smooth, defects free and with diameters smaller than 200 nm. Small amounts of a perfluorinated acridine were added as dopant to the feed solution to modify the wettability of the fibers. The effect of doping on the contact angle values is well apparent. The contact angle values go from 50° of pure PA6 to 120° when 6% of acridine is added. A comparison between fibers and films of pure and doped polyamide 6 was carried out in order to determine the effect of morphology on wettability. Thermal annealing near the Tg of the polymer promoted the segregation of the molecules to the surface, reaching contact angles of 131° with smaller amounts (4%) of acridine. The surface segregation was also promoted by time aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号