首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
3,4-二苯基-2,5-二(3,5-二溴苯基)环戊二烯酮与二苯乙炔经Diels-Alder环加成反应制得1,2,4,5-四苯基-3,6-二(3,5-二溴苯基)苯(6);6经Suzuki偶联反应制得1,2,4,5-四苯基-3,6-二[3,5-二(4-十二烷基苯基)]苯基苯(8);8经路易斯酸催化的Scholl氧化脱氢关环反应合成了一个新的扶手型分子石墨烯,其结构经1H NMR,13C NMR和MALDI-TOF-MS表征。  相似文献   

2.
亚硝基苯与对物3和3,5-二溴苯酚发生亲核取代反应得到化合物4,化合物4与4-乙炔基吡啶盐酸盐发生Sonogashira偶联反应得到化合物5。以3,6-二溴-9,10-菲醌为原料,先后经还原反应和亲核取代反应得到化合物7,化合物7与四(三乙基磷)铂反应生成有机金属铂配体8。化合物5和化合物8通过配位驱动自组装方法合成铂基菱形大环化合物1,其结构经核磁、质谱和紫外可见吸收光谱表征。  相似文献   

3.
邻苯二酚、3,5-二叔丁基邻苯二酚分别与1,5-二氯-3-氧(杂)戊烷在碱性条件下反应, 合成了开链冠醚化合物(1a-b)。1a-b与环氧氯丙烷在氢氧化钠正丁醇中缩合, 得到相应的6-羟基二苯并-16-冠-5(2a-b)。化合物2a-b分虽与丁二酰氯、壬二酰氯在无水苯中反应, 生成了两种新的酯型双冠醚化合物3a-b; 2a-b分别与1,3-二溴丙烷、1,4-二溴丁烷、1,5-二溴戊烷、1,8-二氯-3,6-二氧(杂)辛烷及1,11-二氯-3,6,9-三氧(杂)十一烷在无水二氧六环中反应, 得到了四种新的醚型双冠醚化合物4a-e。  相似文献   

4.
邻苯二酚、3,5-二叔丁基邻苯二酚分别与1,5-二氯-3-氧(杂)戊烷在碱性条件下反应, 合成了开链冠醚化合物(1a-b)。1a-b与环氧氯丙烷在氢氧化钠正丁醇中缩合, 得到相应的6-羟基二苯并-16-冠-5(2a-b)。化合物2a-b分虽与丁二酰氯、壬二酰氯在无水苯中反应, 生成了两种新的酯型双冠醚化合物3a-b; 2a-b分别与1,3-二溴丙烷、1,4-二溴丁烷、1,5-二溴戊烷、1,8-二氯-3,6-二氧(杂)辛烷及1,11-二氯-3,6,9-三氧(杂)十一烷在无水二氧六环中反应, 得到了四种新的醚型双冠醚化合物4a-e。  相似文献   

5.
以3,5-二溴苯甲醚为起始原料,通过Suzuki偶联反应制得3,5-二吡啶苯甲醚(3); 3经三溴化硼脱保护得到3,5-二吡啶苯酚(4); 4进一步发生亲核取代反应得到化合物5;化合物6与5组装得到新型铂基超分子大环,其结构经1H NMR和31P NMR表征。  相似文献   

6.
饶国武  胡惟孝 《有机化学》2004,24(12):1622-1625
氯甲酸乙酯和3,6-二苯基-1,2-二氢-1,2,4,5-四嗪反应生成的是标题化合物3,6-二苯基-1,2-二氢-1,2,4,5-四嗪-1,2-二甲酸乙酯,而不是预期的3,6-二苯基-1,4-二氢-1,2,4,5-四嗪-1,4-二甲酸乙酯,其结构通过X射线单晶结构分析得以证实.此晶体属三斜晶系,P-1空间群,晶胞参数分别为:a=0.8915(2)nm,b=1.0444(2)nm,c=1.1509(3)nm,α=103.268(3)°,β=102.844(3)°,y=100.765(3)°,Z=2,R1=0.0593和wR2=0.1691.结果表明该化合物中心六元环的2,3-二氮杂丁二烯基团不共平面,没有很好地共轭.且该化合物中心六元环呈扭式构象,N(1)和N(2)原子分别偏离环平面-0.03611(41)和0.02944(40)nm.  相似文献   

7.
柳全文  徐慧  张婷  范晓  韩丽君 《化学通报》2006,69(9):708-710
应用正相硅胶、凝胶SephadexLH20柱色谱和反相HPLC等方法,从多管藻(Polysiphoniaurceolata)中分离得到6个溴酚类化合物,通过IR、MS、1D和2DNMR等波谱技术分析鉴定,发现一个有明显的PTP1B抑制活性(IC50=4·9μg/mL)的新化合物:3-溴-4-[3-溴-4,5-二羟基苯基]甲基-5-羟甲基-1,2-二苯酚(1)。另5个已知化合物分别为3-溴-4,5-二羟基苄基乙基醚(2)、3-溴-4,5-二羟基苯甲醇(3)、3-溴-4,5-二羟基苯甲醛(4)、3,5-二溴-4-羟基苯甲醛(5)、3,5-二溴-4-羟基苯甲醇(6)。  相似文献   

8.
报道了一种新型Frétchet树枝配体取代酞菁锌(II)配合物:四-{3,5-二-[3,5-二-(4-羧基苯甲氧基)苯甲氧基]-苯甲氧基}酞菁锌(II)的合成与表征.首先将对氰基苄溴与3,5-二羟基苯甲醇通过Frétchet反应合成3,5-[二-(4-氰基苯甲氧基)]苯甲醇(1),1与四溴化碳和三苯基膦在四氢呋喃中反应合成3,5-二-(4-氰基苯甲氧基)苄溴(2),2与3,5-二羟基苯甲醇反应合成3,5-二-[3,5-二-(4-氰基苯甲氧基)苯甲氧基]苯甲醇(3),接着,3与4-硝基邻苯二甲腈合成"前驱物"四-{3,5-[二-(4-氰基苯甲氧基)]}苯甲氧基邻苯二甲腈(4),然后以1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)为催化剂,醋酸锌为模板剂,4通过缩聚反应合成氰基端基的Frétchet树枝配体取代酞菁锌四-{3,5-二-[3,5-二-(4-氰基苯甲氧基)苯甲氧基]-苯甲氧基}锌酞菁配合物5,最后,5的氰基端基在NaOH溶液中水解为相应的以羧基端基Frétchet树枝配体取代酞菁锌:四-{3,5-二-[3,5-二-(4-羧基苯甲氧基)苯甲氧基]-苯甲氧基}酞菁锌(II)(6).采用元素分析,IR,1H NMR,ESI-MS和MALDI-TOF-MS表征所有化合物的结构,通过UV/Vis,稳态和瞬态荧光光谱法研究了5和6的光物理性质.5和6是一类性能较好的树枝状酞菁光敏剂.  相似文献   

9.
谭凌凌  沈冬  牟海川 《合成化学》2015,23(2):158-160
以3,5-二溴苯胺,碘苯和咔唑为原料,经取代和Ullmann反应合成了一个新的含咔唑三苯胺化合物——N,N-二[4-(9H-9-咔唑基)苯基]-3,5-二溴苯胺,其结构经1H NMR,13C NMR和ESI-MS表征。  相似文献   

10.
宗婷  孙小强  席海涛 《合成化学》2014,22(6):778-780,788
以3,5-二甲基苯酚为原料,经4步反应合成了1,1’-【{5-[3-(乙酰硫基)丙氧基]-1,3-亚苯基}双(亚甲基)】双{[(4,4’-联吡啶)-1-鎓]}二六氟磷酸盐(4);4与1,4-二溴甲基苯和萘模板在低温反应制得含硫代乙酸酯的缺电子环蕃(5);5经连续萃取及离子交换除去萘模板合成了新型含硫代乙酸缺电子环蕃——5,13,20,27-四氮杂七环[25,2,2,22,5,17,11,213,16,217,20,222,25]四十-9-(1-丙基硫代乙酸酯)氧-1(28),2,4,7,9,12,14,16,18,21,23,26,29,31,33,35,37,39-十八烯四六氟磷酸盐(6),其结构经1H NMR和13C NMR表征。  相似文献   

11.
A new synthesis for the title compound that gives an 80% overall yield was developed. Treatment of triaminoguanidine monohydrochloride ( 1 ) with 2,4-pentanedione ( 2 ) gave 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine ( 3 ) in 80–85% yield. Oxidation of 3 with nitric oxide or nitrogen dioxide to 3,6-bis(3,5-dimethyylpyrazol-1-yl)-1,2,4,5-tetrazine ( 4 ) followed by ammonolysis of 4 gave 3,6-diamino-1,2,4,5-tetrazine ( 5 ) in guantitatively yields.  相似文献   

12.
Reaction of Ph2Si(NHNHMe)2 ( 1 ) with n-BuLi and Ph2SiCl2 in 1 : 2 : 1 ratio afforded 54% of 1,2,4-triaza-1-methyl-4-methylamino-3,3, 5, 5-tetraphenyl-3,5-disilacylopentane ( 2 ). In the presence of a catalytic amount of n-BuLi, 2 is rearranged to two isomers, 1,2,4,5-tetraaza-1,4-dimethyl-3,3,6,6-tetraphenyl-3,6-disilacyclohexane ( 3 ) and 1,2,4,5-tetraaza-1,5-dimethyl-3,3,6,6-tetraphenyl-3,6-disilacyclohexane ( 4 ), with 3 as the major product. The crystal structure of 3 reveals a twist-boat conformation of the Si2N4 ring [a = 10.691(4) Å, b = 13.178(4) Å, c = 17.812(3) Å, β = 95.11(7)°; monoclinic, P21/n; Z = 4], in which each N(Me) N(H) unit contains one pyramidal (NH) and one planar (NMe) nitrogen.  相似文献   

13.
A number of 1,4-dihydropyridazines and pyridazines were prepared by the Diels-Alder reaction with an inverse electron demand from cyclic heterodiene systems, 3,6-bis(3,5-dimethyl-4-R-pyrazol-1-yl)-1,2,4,5-tetrazines, and some enamines as well as from 4-vinylpyridine, butyl vinyl ether, phenylacetylene, and acrylamide. The reaction of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine with styrene afforded 4,5-dihydropyridazine, which was readily oxidized by atmospheric oxygen to form the corresponding pyridazine. Electron-withdrawing substituents (Br or Cl) in the pyrazole rings accelerate [4+2]-cycloaddition. When heated, 1,4-dihydropyridazines, which were synthesized from tetrazines and enamines, eliminated amine to give pyridazines. The reactivities of tetrazines were evaluated by quantum-chemical methods. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 354–360, February, 2000.  相似文献   

14.
Two energetic salts, DPHT·DNS·H2O(1) and DHT·2DNS·2H2O(2)[DPHT=3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-hydrazinyl-1,2,4,5-tetrazine; DHT=3,6-dihydrazinyl-1,2,4,5-tetrazine], were synthesized from S-tetrazine with 3,5-dinitrosalicylic acid(DNS). Compounds 1 and 2 were structurally characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The thermal behavior of the title compounds was studied by differential scanning calorimetry(DSC) and thermogravimetry(TG). The non-isothermal decomposition kinetics of compound 2 were investigated. The self-accelerating decomposition temperature, thermal ignition temperature, and critical temperatures of thermal explosion were obtained to evaluate the thermal safety of compound 2. The results show compounds 1 and 2 decompose at 150.8 and 179.2℃, respectively. The TSADT and Tb of compound 2 are higher than those of DHT, which indicates compound 2 is a potential candidate for energetic materials that have good thermal stability.  相似文献   

15.
Reactions of 3,6-bis(4-R-3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazines and 3-amino-6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazines with aliphatic alcohols and water in the presence of a base involved replacement of the dimethylpyrazolyl group and resulted in the formation of mono- and dialkoxy-1,2,4,5-tetrazines and 6-substituted 3-hydroxy-1,2,4,5-tetrazines. Dissociation constants of the latter were determined by potentiometric titration.  相似文献   

16.
Alkylation of tetrahydro-1,2,4,5-tetrazine-3,6-dithione with iodomethane and 1,2-dichloro-4-(chloromethyl)benzene, respectively (Scheme 1, 4 ) followed by oxidation afforded 3,6-bis(methylthio)- and 3,6-bis[[(3,4-dichlorophenyl)methyl]thio]-1,2,4,5-tetrazines ( 6, 15 ). The reaction of 15 with amines provided the 6-[(arylmethyl)thio]-1,2,4,5-tetrazin-3-amines ( 16) while sequential displacement of both methylthio groups in 6 afforded the tetrazine-diamines 8 and 10 . Hydrolysis of N,N-dimethyl-6-(methylthio)-1,2,4,5-tetrazin-3-amine ( 11 ) with potassium hydroxide afforded the tetrazin-3-ol ( 12 ) which was chlorinated and then treated with 4-chlorobenzenethiol to provide 13 . The target 6-substituted-1,2,4,5-tetrazin-3-amines displayed negligible antimalarial activity.  相似文献   

17.
This article reports the preparation of a range of phenyl, pyridyl and pyrazinyl substituted pyridazines via the inverse electron demand [2 + 4] Diels-Alder reaction between 3,6-di(2-pyridyl)-1,2,4,5-tetrazines (bptz) and 3,6-di(2-pyrazinyl)-1,2,4,5-tetrazines (bpztz) and suitable dienophiles including acenaphthalene. The resulting polyaromatic compounds vary systematically in the number of aromatic substituents and the number and position of N-heteroatoms. For four of these compounds, the effect of the molecular changes on the solid-state structures were investigated using single crystal X-ray crystallography. The pyridazines were used as bidentate ligands in {M(II)(bipy)(2)} and tris(homoleptic) complexes (M = Fe, Ru). The optical and electrochemical properties of these complexes reflect the electron accepting character of the new ligands. The facial and meridional isomers of the tris complexes could be separated by column chromatography (on silica), thus allowing a spectral comparison of their absorption and emission properties. The solid-state structures of several of the metal complexes are discussed, including that of the facial isomer of the tris Ru(II) complex of 3,6-bis(2-pyridyl)-4,5-bis(4-pyridyl)pyridazine--a potential preformed geometric motif for the predirected construction of supramolecular assemblies.  相似文献   

18.
The synthesis of the previously unknown parent ring system was developed. Treatment of 3-hydrazino-1,2,4,5-tetrazine ( 4 ) with diethoxymethyl acetate gave the parent ring system. Similar treatment of 3-(3,5-dimethylpyrazol-1-yl)-6-hydrazino-1,2,4,5-tetrazine ( 2 ) with one carbon cyclizing reagents gave 3,6-di-substituted derivatives of the 1,2,4-triazolo-1,2,4,5-tetrazine ring system.  相似文献   

19.
Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) ( 3 ) was synthesized by the reaction of 1,4-phenylenebisboronic acid ( 1 ) and 4-bromo-3,6-dibutoxyphthalonitrile ( 2 ), using Suzuki cross-coupling reaction. The newly synthesized compound ( 3 ) was characterized by FT-IR, MALDI-MS, ESI-MS, 1 H-NMR, 13 C-NMR, and 13 C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6-dibutoxyphthalonitrile) ( 3 ) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound ( 3 ) displayed a significantly ‘turn-off’ response to Fe 3+ , which was referred to 1:2 complex formation between ligand ( 3 ) and Fe 3+ . The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe 3+ ions.  相似文献   

20.
2,3-Dicarbomethoxy-7,7-dimethyl-7-silabicyclo[2.2.1]hepta-2,5-diene (III) on photolysis gave dimethyl tetraphenylphthalate whereas the photolysis of 7,7-dimethyl-7-silabicyclo[2.2.1]hep-5-ene-2,3-dicarboxylic anhydride (XIa) resulted in the formation of 1,1-dimethyl-2,3,4,5-tetraphenyl-1-silacyclopentadiene (XIIIa). The thermolysis of XIa also gave rise to XIIIa. Similarly, the photolysis as well as thermolysis of 1,4,5,6,7,7-hexaphenyl-7-silabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (XIb) led to hexaphenylsilacyclopentadiene (XIIIb). Attempts to detect radical intermediates in these thermal and photochemical transformations by carrying out the reaction in the presence of hydroquinone, hydrazobenzene, 3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazine, cumene and tolan were unsuccessful. An attempted preparation of 7-silabicyclo[2.2.1]hepta2,5-dienes by the reaction of silacyclopentadienes such as 1-methyl-1-vinyl2,3,4,5-tetraphenyl-1-silacyclopentadiene (XV) and 1-methyl-1,2,3,4,5-pentaphenyl-1-silacyclopentadiene (XVI) with dimethyl acetylenedicarboxylate resulted in the isolation of dimethyl tetraphenylphthalate indicating that the corresponding 7-silabicyclo[2.2.1]hepta-2,5-dienes are thermally unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号