首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
《Composite Interfaces》2013,20(4-5):343-368
We couple a morphological study of a mixture of diblock copolymers and rod-like, solid nanoparticles with a micromechanical simulation to determine how the spatial distribution and aspect ratio of the particles affects the mechanical behavior of the composite. The morphological studies are conducted through the SCF/DFT technique, which couples the self-consist field theory (SCFT) for the diblocks and a density functional theory (DFT) for parallelepiped particles. Through the SCF/DFT calculations, we obtain the equilibrium morphology of the diblock/particle mixtures. We find that the distribution of particles within the polymers is dependent not only on the relative interaction energies between the particles and the different blocks, but also on the aspect ratio of the rod-like solids. The output of the SCF/DFT model serves as the input to the Lattice Spring Model (LSM), which consists of a three-dimensional network of springs. In particular, the location of the different phases is mapped onto the LSM lattice and the appropriate force constants are assigned to the LSM bonds. A stress is applied to the LSM lattice, and we calculate the local stress and strain fields and overall elastic response of the material. We find that high aspect ratio rods can dramatically increase the Young's modulus of the material. By integrating the morphological and mechanical models, we can isolate how modifications in physical characteristics of the particles and diblocks affect both the structure of the mixture and the macroscopic behavior of the composite. Thus, we can establish how choices made in the components affect the ultimate performance of the material.  相似文献   

2.
《Solid State Ionics》2006,177(33-34):2967-2977
The LSM/ScSZ composite powder materials for SOFC cathodes were prepared by the mechanical method using an attrition-type particle composing machine and their electrochemical performance was examined. They are designed in such a way that relatively large LSM particles are coated with fine-grained ScSZ particles prior to the electrode fabrication process such as sintering, thus ensuring the establishment of both the ionic and electronic conducting paths within the electrode. The composite cathode using these composite powders outperformed, in the interfacial area specific resistance, a simple LSM cathode and the LSM/ScSZ composite cathode fabricated by an ordinary starting powder mixture without mechanical treatment. The interfacial area specific resistance was actually reduced by 75% relative to the simple LSM cathode, and by 50% relative to the ordinary composite cathode. In addition, the amount of ScSZ doping was reduced down to 20% by weight fraction. The present result suggests that the proposed composite particles can be considered as a potential cathode material in order to enhance SOFC cathode performance.  相似文献   

3.
The modification of the compatibility between polyethylene (PE) and polypropylene (PP) by using irradiated PE wax (PE wax) is the purpose of this study. In this part, polymer blends based on various ratios of PE and PP were blended with 2.5% PE wax in all the blend ratios to determine the optimum ratio of the blend to be compatabilized. The influence of PE wax as a compatibilizing agent for PE and PP blend was investigated through the measurements of thermal, mechanical and morphological properties. The PP/PE blends modified by this method showed higher mechanical properties than those of the unmodified blends. Also, stress and strain of the modified blend having ratio (60/40) PP/PE blend recorded the maximum mechanical behavior. Scanning electron microscopy (SEM) micrographs of modified blends showed an indication of strong interfacial adhesion and a smooth continuous surface in which giving a support to the effect of irradiated PE wax as a tool for improving the compatibility.  相似文献   

4.
In this paper, we present an alternative approach for the turbulence modelling in the single-relaxation-time lattice Boltzmann method (LBM) framework by treating the turbulence term as an extra forcing term, in addition to the traditional approach of modifying the relaxation time. We compare these two different approaches and their mixture in large-eddy simulation (LES) of three-dimensional decaying isotropic homogenous turbulence using the Smagorinsky model and the mixed similarity model. When the LES was conducted using the Smagorinsky model, where the Boussinesq eddy-viscosity approximation is adopted, the results showed that these three different implementations are equivalent. However, when the mixed similarity model is adopted, which is beyond the Boussinesq eddy-viscosity approximation, our results showed that an equivalent eddy-viscosity will lead to errors, while the forcing approach is more straightforward and accurate. This provides an alternative and more general framework of simulation of turbulence with models in LBM, especially when the Boussinesq eddy-viscosity approximation is invalid.  相似文献   

5.
Jingyu Han 《中国物理 B》2022,31(3):34601-034601
Studying the evolution of interface contact state, revealing the "black box" behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then, we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.  相似文献   

6.
The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism, a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated, the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material, one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Meanwhile, the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation, the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The interaction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results. Supported by the National Natural Science Foundation of China (Grant No. 10572138)  相似文献   

7.
Using laser surface melting (LSM) of a roller, to obtain the desired distribution of the microstructure, hardness and residual stresses with minimum distortion, is essential in order to improve machining efficiency and to achieve reliable service performance. In this study, a 3D finite element model has been developed to simulate the wide-band LSM process and predict the thermal and mechanical properties in the melted zone. The microstructure evolution, hardness distribution and stress field in the melted zone with different laser power were simulated. With the increase of the laser power from 3000 to 3800 W, the width and the depth of the laser melted layer increase, while the laser power has a little effect on the martensite contents, which exceed 90% in the melt-hardened zone. It greatly affects the mechanical properties in the melt-hardened zone with its volumetric expansion effect and the hardness increases by 2-3 times. The residual stress distributed within the melt-hardened zone is always of the compressive type. The amplitude of compressive stress exists in the transition region, and the amplitude of von Mises stress within the heat affected-zone (HAZ) decreases with the increase in laser power. The accuracy of the developed finite element simulation strategy is validated for phase proportion and hardness distributions through the wide-band LSM on roller steel with proper instrumentation for data measurement. This agreement is encouraging.  相似文献   

8.
王江华  贺端威 《物理学报》2008,57(6):3397-3401
金刚石压砧的几何结构使得在高压下封垫内的样品通常处于单轴应力场中:压砧轴向加载应力最大,径向应力最小.由于金刚石压砧内非静水压单轴应力场的影响,用传统的高压原位X射线衍射方法测得的物质压缩曲线一般位于理想静水压压缩曲线之上.利用金刚石压砧径向X射线衍射技术以及晶格应变理论,结合最近的钨、金刚石和硼六氧样品的高压原位同步辐射径向X射线衍射实验结果,从宏观差应力、样品强度、标压物质和待测物质强度的关系三个方面分析讨论了金刚石压砧内单轴应力场对物质状态方程测量的影响及解决方案. 关键词: 金刚石压砧 单轴应力场 高压原位X射线衍射 状态方程  相似文献   

9.
对于晶格结构响应的仿真与实验有助于我们理解激光激发引起的动态过程.利用一维原子链模型研究了激光加热后由于温度分布不均匀性产生的热应力对晶格的影响,该模型的计算结果与使用超快X射线衍射获得的实验结果相符合.该模型为研究光激发金属以及半导体等材料的超快晶格动力学提供了理论分析基础.  相似文献   

10.
王苍龙  段文山  陈建敏  石玉仁 《中国物理 B》2011,20(1):14601-014601
The dynamics of a certain density of interacting atoms arranged on a two-dimensional square lattice, which is made to slide over a two-dimensional periodic substrate potential with also the quare lattice symmetry, in the presence of dissipation, by an externally applied driving force, is studied. By rotating the misfit angle θ, the dynamical behaviour displays two different tribological regimes: one is smooth, the other becomes intermittent. We comment both on the nature of the atomic dynamics in the locked-to-sliding transition, and on the dynamical states displayed during the atom motion at different values of the driving force. In tribological applications, we also investigate how the main model parameters such as the stiffness strength and the magnitude of the adhesive force affect the static friction of the system. In particular, our simulation indicates that the superlubricity will appear.  相似文献   

11.
A modified Gruhn–Hess pair potential model, where the potential parameters related to the elastic constants are different from the original model, was investigated with the aid of Monte Carlo (MC) simulation and Mean Field (MF) theory based upon a two-dimensional nematic lattice model. The model produces a ground state in perfect nematic order, where particles are aligned in the lattice plane. Both the MF predictions and the simulation results for the second-rank ordering tensor show that the system is biaxial in the low-temperature region, with a positive primary order parameter and the main director aligned along the lattice axis. A transition to uniaxial order takes place at higher temperatures with a negative primary order parameter and the director is orthogonal to the lattice plane. This orientational order survives up to temperatures higher than the transition temperature of the three-dimensional lattice model, possibly at all finite temperatures. MF predictions agree qualitatively with simulation but, in quantitative terms, the transition temperature is overestimated by 52%.  相似文献   

12.
We undertake a numerical study of the Flory-Huggins-de Gennes functional ind=3 dimensions describing a polymer blend. By discretising the functional on a three-dimensional lattice and employing the hybrid Monte Carlo simulation algorithm, we investigate to what extent the inclusion of the term describing fluctuations in local polymer concentration alters the phase diagram of the model. We find that, despite the relatively small weight of the fluctuation term, the coexistence curve is shifted by an appreciable amount from that predicted by naive mean-field theory, which ignores such spatial fluctuations. The direction of the shift is consistent with that already observed in experiment and in simulations of microscopic models of polymer blends. A finite-size scaling analysis indicates that the critical behavior of the model seems to belong to the 3D Ising universality class rather than being mean-field in nature.It is a pleasure to dedicate this paper to Oliver Penrose on the occasion of his 65th birthday.  相似文献   

13.
《Solid State Ionics》2006,177(9-10):915-921
Electrochemical cells formed by the interface between dense and porous lanthanum strontium manganate (LSM) and yttria stabilized zirconia (YSZ) were submitted to annealing temperatures varying from 1373 K to 1673 K for 200 h and studied by Impedance Spectroscopy (IS) in order to investigate how the high annealing temperature can modify the contact between LSM/YSZ and to which extension these changes influence the electrical behavior of dense and porous LSM electrodes before and after the formation of insulating phases. Up to 1473 K the annealing process did not lead to substantial electrical behavior modifications at the LSM/YSZ interfaces for both porous and dense electrodes. IS measurements show two capacitive semicircles, the best fitting of impedance data brings to an equivalent circuit constituted by a serial combination of the electrolyte resistance and two parallel combinations of a resistance and a constant phase element, CPE. The higher frequency semicircles, HF, were attributed to the diffusion of oxide ions from the interface LSM/YSZ to the oxide ion vacancies located at the electrolyte surface. The semicircle at lower frequency, LF, will be ascribed to the oxygen species adsorption and diffusion in the LSM. At 1473 K the only changes recorded are related with the sinterization process of the porous electrodes. Over of 1473 K, the resistance contributions increased largely, especially for porous electrodes, and one additional semicircle was observed. This semicircle was associated to the oxygen diffusion process at the new insulating phases formed from YSZ and LSM solid state reactions. Porous and dense electrodes exhibited different rates for the degradation process. The porous electrode degraded faster than the dense one, probably because of the morphological effects as grain growth and their coalescence during annealing at higher temperatures.  相似文献   

14.
Thermoplastic elastomers (TPEs) based on natural rubber (NR)/polypropylene (PP) with different blend ratios were prepared and studied. The TPEs were obtained by dynamic vulcanization of NR/PP using a sulfur (S)/N-tert-butyl-2-benzothiazolesulphenamide (TBBS) and tetramethylthiuram disulphide (TMTD) curative system during processing in the melt state in an internal mixer equipped with cam rotors. Rheological, thermal, mechanical, dynamic, and morphological properties of the TPEs prepared were investigated. Based on this study a mechanism for the NR crosslinking was proposed where the sulfur vulcanization occurs through radical substitution in the forms of polysulfide bridges. The dynamic vulcanization process increases the stiffness of the NR phase in the TPEs and modifies the rheological and thermal behavior of the system compared to the behavior of the basic material PP. The crosslinked NR particles restrict the spherulitic growth and the regular arrangement of the spherulites of PP phase, decreasing the crystallinity degree. On the other hand, a reduction of mobility of the chain segments was also observed and, consequently, an increase of the Tg values. NR/PP TPEs with high content of NR showed superior mechanical performance compared to the uncrosslinked NR/PP blends in terms of tensile strength, Young's modulus and hardness. An increase of approximately 320% in Young's modulus values was obtained for the NR70/PP30 TPE compared to NR70/PP30. Morphological studies revealed the formation of large aggregates of NR domains in NR/PP TPEs which increased in size with an increase of the rubber content.  相似文献   

15.
The elasto-plastic-damage behavior of anisotropic aluminum alloys is investigated under finite deformation using a physical mechanism based constitutive model. With an application to the structural calculation, the present model is used to describe and analyze the mechanical response of anisotropic 6260-T6 aluminum alloy extrusions. For the tensile specimens extracted along three different material orientations from the extruded aluminum profile, twelve simulations are carried out covering four different specimen geometries. The simulation results in force-displacement response and central logarithmic axial strain evolution are compared with experimental results. From the comparisons, it can be concluded that the present model has the capacity to describe the behavior of anisotropic material. From the force-displacement curves, the anisotropy is observed in different material orientations, and the physical mechanism of anisotropy is analyzed.  相似文献   

16.
We study link-diluted +/-J Ising spin glass models on the hierarchical lattice and on a three-dimensional lattice close to the percolation threshold. We show that previously computed zero temperature fixed points are unstable with respect to temperature perturbations and do not belong to any critical line in the dilution-temperature plane. We discuss implications of the presence of such spurious unstable fixed points on the use of optimization algorithms, and we show how entropic effects should be taken into account to obtain the right physical behavior and critical points.  相似文献   

17.
We have studied the temperature evolution of the optical absorption and Raman scattering spectra of a trans-cis blend of “soluble” polyacetylene in a polyvinylbutyral/butanol mixture. On decreasing temperature a reversible restructuring of the electronic and lattice systems of trans-(CH)x occurs: the electronic energy gap contracts at the high rate of 0.4 meV/K, and the vibrational modes are modified. The experimental data obtained are interpreted in terms of a peculiar interaction of π-conjugated electrons with lattice fluctuations. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 9, 613–617 (10 November 1996) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

18.
《Solid State Ionics》2006,177(15-16):1361-1369
The mechanism of the activation process for the O2 reduction on (La0.8Sr0.2)0.9MnO3 (LSM) electrodes is investigated by examining the electrochemical behavior of LSM under cathodic and anodic polarization conditions and the relaxation behavior of LSM under open circuit. A comparative study is also performed on a LSM electrode after dilute acid etching treatment. It has been shown that the segregated SrO has a significant inhibiting effect on the surface exchange process such as dissociative adsorption, incorporation and diffusion of oxygen species on the LSM surface, resulting in the initially very high impedance for the O2 reduction on LSM electrodes. A mechanism involving the incorporation of SrO into LSM lattice with the concomitant removal of cation vacancies is proposed for the activation effect of cathodic current passage/polarization in solid oxide fuel cells.  相似文献   

19.
Using numerical calculations, we undertake the first morphological studies of mixtures of AB diblocks and nanoparticles that are confined between two hard walls. A complex interplay of entropic and enthalpic interactions drives the nonselective particles to localize at the hard walls and A/B interfaces, causing the mixture to spontaneously self-assemble into particle-decorated lamellae that are oriented perpendicular to the surfaces. The film reveals a periodic array of particle "nanowires" that are separated by the nanoscale polymer domains, yielding a vital material for nanodevice fabrication.  相似文献   

20.
基于格子气体理论,提出了方阱流体及其混合物的新配位数模型和构型能表达式。新模型与Lee等人的MonteCarlo计算机模拟结果进行了比较,取得了较好的计算结果。将新模型应用于分子尺寸不同的混合物时,计算结果尤为满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号