首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The spatial arrangement of the side chains of conjugated polymer backbones has critical effects on the morphology and electronic and photophysical properties of the corresponding bulk films. The effect of the side‐chain‐distribution density on the conformation at the isolated single‐polymer‐chain level was investigated with regiorandom (rra‐) poly(3‐hexylthiophene) (P3HT) and poly(3‐hexyl‐2,5‐thienylene vinylene) (P3HTV). Although pure P3HTV films are known to have low fluorescence quantum efficiencies, we observed a considerable increase in fluorescence intensity by dispersing P3HTV in poly(methyl methacrylate) (PMMA), which enabled a single‐molecule spectroscopy investigation. With single‐molecule fluorescence excitation polarization spectroscopy, we found that rra‐P3HTV single molecules form highly ordered conformations. In contrast, rra‐P3HT single molecules, display a wide variety of different conformations from isotropic to highly ordered, were observed. The experimental results are supported by extensive molecular dynamics simulations, which reveal that the reduced side‐chain‐distribution density, that is, the spaced‐out side‐chain substitution pattern, in rra‐P3HTV favors more ordered conformations compared to rra‐P3HT. Our results demonstrate that the distribution of side chains strongly affects the polymer‐chain conformation, even at the single‐molecule level, an aspect that has important implications when interpreting the macroscopic interchain packing structure exhibited by bulk polymer films.  相似文献   

2.
The post‐functionalization of poly(3‐hexylthiophene) (P3HT) via various synthetic routes is reported. Well‐defined and monofunctionalized ω‐thiol‐terminated P3HT, ω‐carboxylic acid‐terminated P3HT, ω‐acrylate‐terminated P3HT, and ω‐methacrylate‐terminated P3HT are obtained in high yields through a straightforward procedure. From those, different novel P3HT‐based graft copolymers are synthesized following two routes: “grafting onto” and “grafting through” (macromonomer polymerization) methods. The synthesis of three types of graft copolymers is described. Each one has “rod” P3HT‐grafted side chains on a “coil” main chain, which can be polyisoprene, poly(vinyl alcohol), or poly(butyl acrylate). Each copolymer is characterized by size‐exclusion chromatography and NMR.  相似文献   

3.
Here an in‐depth analysis of reversible addition–fragmentation chain transfer (RAFT) polymerization kinetics is reported in order to provide better definition of poly(3‐hexylthiophene) (P3HT) rod–coil block copolymers thru a more thorough understanding of the RAFT polymerization of the coil block. To this end, a new P3HT macroRAFT agent is synthesized and utilized to prepare rod–coil block copolymers with P3HT and poly(styrene), poly(tert‐butylacrylate), and poly(4‐vinylpyridine), and the RAFT polymerization kinetics of each system are fully detailed. This is achieved by a comprehensive analysis of characterization data from 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, and matrix‐assisted laser desorption ionization time of flight spectroscopy, which are used as complementary techniques in order to address difficulties in accurately characterizing the synthesized polymer systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3575–3585  相似文献   

4.
Three new side‐chain conjugated polythiophene derivatives, poly{3‐[2‐(3‐methoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3MOPVT), poly{3‐[2‐(3,5‐dimethoxy‐4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3DMOPVT), and poly{3‐[2‐(3,4‐dioctyloxy‐phenyl)‐vinyl]‐thiophene} (P3DOPVT), were synthesized by Wittig‐Hornor reaction and GRIM method and compared with poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) for investigating the effect of the end groups of the conjugated side‐chain on the properties of the polymers. Owing to the electron‐donating ability of methoxy groups, the visible absorption peaks of P3MOPVT and P3DMOPVT solutions and films become stronger and red‐shifted compared with P3OPVT. The electrochemical bandgaps of the four polymers are 2.15 eV for P3OPVT, 1.99 eV for P3MOPVT, 1.85 eV for P3DMOPVT, and 2.36 eV for P3DOPVT, respectively, which indicate that the electron‐donating ability of the methoxy end group on the conjugated side chain of P3MOPVT and P3DMOPVT and the large steric hindrance of the two octyloxy end groups on the conjugated side chain of P3DOPVT have obvious influence on the electrochemical properties of the side‐chain conjugated polythiophenes. Polymer solar cells were fabricated with a structure of ITO/PEDOT:PSS/Polymer:PCBM/LiF/Al. The best device, based on P3DMOPVT, shows a power conversion efficiency of 1.63% under the illumination of AM1.5, 80 mW/cm2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4916–4922, 2006  相似文献   

5.
Two soluble side‐chain conjugated polythiophenes, poly{3‐[2‐(4‐octyloxy‐phenyl)‐vinyl]‐thiophene} (P3OPVT) and poly{3‐(4‐octyloxy‐phenylethynyl)‐thiophene} (P3OPET) have been synthesized successfully. In P3OPVT and P3OPET, substituted benzene rings are connected with the polythiophene backbone through trans carbon–carbon double bond and carbon–carbon triple bond, respectively. Absorption spectra of the P3OPVT and P3OPET both show two absorption peaks located in UV and visible region, respectively. The results of optical and electrochemical measurements indicate that the conjugated side‐chains can reduce the bandgap effectively. This type of side‐chain conjugated polythiophenes may be promising for the applications in polymer photovoltaic cells and field effect transistors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2206–2214, 2006  相似文献   

6.
We have studied the structure and morphology of self-assembled polyelectrolyte multilayers prepared using poly(styrenesulfonate) (PSS) and four different cationic poly(alkoxythiophene) derivatives bearing methylimidazolium-terminated ionic side chain at the 3-position of the thiophene ring: poly(1-methyl-3-[3-[3-thienyloxy]-propyl]-1H-imidazolium) (P3TOPIM), poly(1-methyl-3-[6-[3-thienyloxy]-hexyl]-1H-imidazolium) (P3TOHIM), poly(1-methyl-3-[2-[(4-methyl-3-thienyl)oxy]-ethyl]-1H-imidazolium ) (P4Me-3TOEIM), and poly(1-methyl-3-[6-[(4-methyl-3-thienyl)oxy]-hexyl]-1H-imidazolium ) (P4Me-3TOHIM). All the multilayers exhibited regular growth. The thickness of the multilayers was measured with ellipsometry, their layer-by-layer growth was followed by polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and ellipsometry, and the morphology of the films was studied by atomic force microscopy (AFM). The length of the methylimidazolium-terminated side chain (C(n), n = 2, 3, 6) and the substituent (H or Me) at the 4-position of the thiophene ring were varied. All multilayers were inhomogeneous in the sub-micrometer scale and contained aggregates of two kinds. The large ones with a low and constant surface number density were attributed to PSS, whereas the small aggregates were polythiophene-based. The surface density of these organic semiconducting nanoparticles greatly depended on the structure of polythiophene, being favored by polymer regioregularity and the length of the side chain. The side chains remained disordered in all the multilayers, but with polythiophenes having hexyl chains both the imidazolium and thiophene rings tended to orient themselves more perpendicular to the surface than in films containing shorter chains (C2 or C3). The relative water content of the multilayers (at 7.1% relative humidity) did not depend on the film thickness and was the lowest for P4Me-3TOHIM. As the number of bilayers increased the methylimidazolium-sulfonate ion pairs gradually weakened and became more individually hydrated.  相似文献   

7.
We present a study of photoinduced interfacial electron transfer (ET) dynamics of SnO2 nanocrystalline thin films sensitized by polythiophene derivatives (regioregular poly(3-hexylthiophene) (P3HT) and regiorandom poly(3-undecyl-2,2'-bithiophene) (P3UBT)). ET dynamics were measured by following the dynamics of injected electrons in SnO2 and polarons in the conjugated polymer using ultrafast mid-IR transient absorption spectroscopy. The rate of electron transfer from P3HT and P3UBT to SnO2 films was determined to occur on sub-picosecond time scale (120 +/- 20 fs). In P3HT/SnO2 composite, interchain charge transfer was found to compete with and reduce the quantum efficiency of interfacial electron transfer at high polymer loading. This interchain charge separation processes can be reduced in non-regioregular polymer or at low polymer loading levels.  相似文献   

8.
In order to clarify the structural changes that occur in the thermochromic phase transition of poly (3-dodecylthiophene) [P3DT] and poly (3-hexylthiophene) [P3HT], the temperature dependence of x-ray diffraction and Fourier transform infrared spectra was measured. (1) Orthogonal unit-cell parameters were determined at room temperature: a=25.83 Å, b=7.75 Å, c (fiber axis)=7.77 Å for P3DT and a=16.63 Å, b=7.75 Å, and c=7.77 Å for P3HT. A large variation of the a-axis length between P3DT and P3HT indicates the extended trans conformation for the alkyl side chains which are oriented along the lateral a-axis direction. (2) The interplanar spacing, intensity, and integral width of the x-ray (h00) and (00l) reflections were found to change drastically in the transition region. (3) Polarized infrared measurements at high temperature revealed a marked increase of the gauche band intensity for the alkyl side group modes followed by a decrease in the band intensity of the thiophene ring modes. (4) The layer reflections of the x-ray fiber diagram become diffuse at high temperatures, indicating that the transition occurs in a liquidcrystalline manner with the orientation of the main chain axes preserved but with almost no axial correlation between the neighboring main chains. These results provide experimental support for the structural model proposed earlier: as the temperature increases, the trans-type side chains begin to disorder by introduction of gauche bonds. This disordering disrupts the regularity of the main chain conformation and decreases the effective length of the polythiophene conjugated system.  相似文献   

9.
报道了3种取代聚噻吩,3-己基聚噻吩(P3HT)、3,4-二戊基聚噻吩(P34PT)、3-辛氧基聚噻吩(P3OOT)的合成方法1、H-NMR测试结果及UV-Vis吸收光谱和荧光光谱分析结果。用密度泛函方法计算了无取代噻吩、3-乙基噻吩、3,4-二乙基噻吩、3-乙氧基噻吩二聚体的电子性能。随聚合度的提高,聚合物能隙变窄。无取代噻吩二聚体的能隙为4.216 eV,重复单元长度为0.392 7 nm;乙基取代噻吩二聚体的能隙为4.733 eV,重复单元长度为0.393 9 nm;乙氧基取代噻吩二聚体的能隙为3.890 eV,重复单元长度为0.390 8 nm;双乙基取代噻吩二聚体的能隙为5.168 eV,重复单元长度为0.392 5 nm。理论变化规律与实验结果基本一致。  相似文献   

10.
Conjugated graft copolymers consisting of a poly(3‐hexylthiophene) (P3HT) backbone and poly(9,9'‐dioctylfluorene) side chains (PF) with different grafting degrees were synthesized by the CuAAC reaction. The properties of these materials were studied by UV‐Vis and fluorescence spectroscopy. The former technique provides insight in their self‐assembly, while the latter is used to study the energy funneling from the PF side chains to the P3HT backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1252–1258  相似文献   

11.
Various polymeric blends of hole transporting materials, (such as MEH-PPV and P3HT) and electron transporting materials (such as poly(phenyl-vinyl-quinoline) and poly[2-(4-methacryloxyphenyl)-5-phenyl)-1,3,4-oxadiazole]) have been prepared and investigated. Moreover a soluble, main chain oxadiazole bearing polyether has been synthesized, aiming towards an efficient electron transporting polymeric material which was also used for blend preparation together with P3HT. A deeper investigation into their spectroscopic characteristics using, primarily, FT-IR spectroscopy, but also UV-Vis spectroscopy has been conducted. The surface morphology of these blends was investigated using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) in an attempt to gather information for their solid state properties and morphologies. Finally, DSC measurements provided additional insight into the thermal behaviour of these materials.  相似文献   

12.
Azobenzene‐functionalized polythiophene derivatives, Poly[4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate] (alkyl=hexyl and octyl) (P6 and P8) and the copolymers of 3‐hexylthiophene and 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate (alkyl=hexyl and octyl) (P66 and P86) were synthesized. The composition, structure, and thermal property of these polythiophene derivatives were fully characterized by NMR, FTIR, GPC, MDSC, and XRD. The structural dependence of the photochromic features and thermochromic behaviors were also investigated by means of photoluminescence and UV‐Vis absorption spectroscopy. The results have shown that the azobenzene substitution renders the homopolymer (P6 and P8) some interesting optical properties that can be modulated by UV light irradiation. In these azobenzene‐modified polythiophenes, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced trans–cis isomerization of the azobenzene pendant groups has significant effect on photoluminescent emission. However, the effect becomes less prominent for copolymer P66 and P86 due to the lower content of azobenzene chromophore in the side chain of the copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1421–1432, 2005  相似文献   

13.
Density Functional Theory has been used to study the structural, electronic and charge-transport properties of two regio-regular head-to-tail polythiophene derivatives, i.e. poly(3-hexyl-thiophene), P3HT, and poly(3-oxyhexyl-thiophene), P3OHT. The effect of substituents on the electronic structure was analyzed by means of bandwidth, bandgap, effective mass, total and partial densities of states and crystal orbital overlap populations. Electronic couplings were estimated from band diagrams as the splitting of the valence band. The neutral and cationic states of isolated oligomers were optimized using the supercell approximation. The hole-transfer rates and mobilities were evaluated according to Marcus's theory. Results provide a compelling illustration of the effect of side chains on the crystal packing, electronic structure and charge-transport properties. Thus, the hole mobility calculated for the alkyl derivative was 0.15 cm(2) V(-1) s(-1) (experimental mobility is 0.10 cm(2) V(-1) s(-1)), while the alkoxy derivative has a theoretical mobility of 0.49 cm(2) V(-1) s(-1). The obtained results hopefully could motivate experimentalists to try out P3OHT for an improved charge carrier mobility.  相似文献   

14.
It is known that poly(3‐alkylthiophene) (P3AT) side‐chain length notably influences the photovoltaic performances of relating devices. However, comprehensively study on its impact on the structures of P3ATs and their blends with [6, 6]‐phenyl‐C61 butyric acid methyl ester (PCBM) is insufficient. By using solid‐state NMR and FTIR techniques, four P3ATs and their PCBM blends are investigated in this work, focusing on the phase structures as modulated by side‐chain length. Recently, we revealed multiple crystalline main‐chain packings of packing a and b together with a mesophase in poly(3‐butylthiophene) (P3BT) films (DOI: 10.1021/acs.macromol.6b01828). Here, the semicrystalline structures are investigated on poly(3‐hexylthiophene) (P3HT), poly(3‐octylthiophene) (P3OT), and poly(3‐dodecylthiophene) (P3DDT) with traditional form I modification, where packing a and the amorphous phase are probed. Furthermore, crystallized side chain within packing a is detected in both P3OT and P3DDT films, which shows a FTIR absorption at 806 cm−1. Structural studies are also conducted on P3AT:PCBM blends. Compared with the pure P3ATs, the polymer crystallinities of the blends show reduction of about 40% for P3OT and P3DDT, whereas only about 10% for P3HT. Moreover, in P3BT:PCBM and P3HT:PCBM, the crystalline polymers and PCBM are phase separated, while in P3OT:PCBM and P3DDT:PCBM, blend components are mostly miscible. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 751–761  相似文献   

15.
The crystallization properties of three regioregular poly(3‐alkyl thiophene)s (P3ATs) are studied: poly(3‐hexyl thiophene) (P3HT), poly(3‐octyl thiophene) (P3OT), and poly(3‐dodecyl thiophene) (P3DDT). The morphology of the isothermally crystallized samples is a whisker type. The values of the enthalpy of fusion of ideal crystals (ΔH), determined from the melting point depression in the polymer–diluent system, are 99, 73.6, and 52 J/g for P3HT, P3OT, and P3DDT, respectively. The values of the equilibrium melting point (T), determined from the Hoffman–Weeks extrapolation procedure, are 300, 230, and 180 °C for P3HT, P3OT, and P3DDT, respectively. From the linear extrapolation of the P3AT data, the T and ΔH values of unsubstituted polythiophene are predicted to be 400 °C and 139 J/g, respectively. The crystallization kinetics of these polymers are studied with differential scanning calorimetry, and the Avrami exponents vary between 0.6 and 1.4, indicating one‐dimensional heterogeneous nucleation with linear growth. As the P3AT whiskers are produced from the chain‐folding process, the Lauritzen–Hoffman growth rate theory is applied to analyze the temperature coefficient of the crystallization rate data. Graphical plots indicate a transition from regime I to regime II during isothermal crystallization for all the P3ATs studied. The fold surface energy and the work of chain folding calculated from the slopes of the graphical plots decrease with an increase in the number of carbon atoms of the side chain. The primary crystallization process of the side‐chain crystallization is very fast and is attributed to the zipping effect of the main‐chain crystals. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2073–2085, 2002  相似文献   

16.
A combined theoretical and experimental investigation of the electronic structure and optical properties of poly(3-hexylthiophene) (P3HT), poly[3-(4-octylphenyl)thiophene] (POPT) and poly[3-(4-octylphenoxy)thiophene] (POPOT) is reported. In comparison with P3HT, POPT and POPOT exhibit better stabilities and the presence of an oxygen atom and/or a phenyl ring in the side chains enhances conjugation. Quantum chemical calculations have been performed on oligomers of increasing chain length to establish the changes in the electronic and optical properties when going from P3HT to the new derivative POPOT. The knowledge of the structure of these polymers is of utmost importance in understanding their optical properties in different phases (solution and condensed phase). The calculations indicate that, in opposition to P3HT and POPT polymers where the introduction of alkyl chains and the pendant phenyl disturbs the planarity of the backbone of the conjugated segment, POPOT has a better degree of organization in both states: the conjugated chain remains planar even in the presence of the phenoxy groups. Finally, the exciton binding energy is evaluated for these polymers and allows us to conclude that the POPOT is a promising polymer for photovoltaic applications when compared to P3HT and POPT.  相似文献   

17.
The nature of main in-plane skeleton Raman modes (C=C and C-C stretch) of poly(3-hexylthiophene) (P3HT) in pristine and its blend thin films with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) is studied by resonant and nonresonant Raman spectroscopy and Raman simulations. Under resonant conditions, the ordered phase of P3HT with respect to its disordered phase is identified by (a) a large shift in the C=C mode peak position to lower wavenumber (~21 cm(-1) shift), (b) a narrower fwhm of the C=C mode (~9 cm(-1) narrower), (c) a larger intensity of the C-C mode relative to the C=C mode (~56% larger), and (d) a very small Raman dispersion (~5 cm(-1)) of the C=C mode. The behavior of the C=C and C-C modes of the ordered and disordered phases of P3HT can be explained in terms of different molecular conformations. The C=C mode of P3HT in P3HT:PCBM blend films can be reproduced by simple superposition of the two peaks observed in different phases of P3HT (ordered and disordered). We quantify the molecular order of P3HT after blending with PCBM and the subsequent thermal annealing to be 42 ± 5% and 94 ± 5% in terms of the fraction of ordered P3HT phase, respectively. The increased molecular order of P3HT in blends upon annealing correlates well with enhanced device performance (J(SC), -4.79 to -8.72 mA/cm(2) and PCE, 1.07% to 3.39%). We demonstrate that Raman spectroscopy (particularly under resonant conditions) is a simple and powerful technique to study molecular order of conjugated polymers and their blend films.  相似文献   

18.
A new polythiophene derivative bearing a malonic acid dimethyl ester substituent attached to the 3-position of the repeat unit has been prepared by chemical oxidative-coupling polymerization. The chemical structure of poly(2-thiophen-3-yl-malonic acid dimethyl ester) has been analyzed by FTIR and 1H NMR spectroscopy and, additionally, the distribution of the head-to-tail and head-to-head diads arising from polymerization was found to be a 75-25%. The glass transition temperature identified for this polymer was 17.6 °C lower than that recently determined for a closely related polythiophene derivative, in which the ester substituent arose from acrylic acid rather than from malonic acid. On the other hand, the electrical conductivity of the new material, which was soluble in polar solvents but not in water, was higher than that typically found for poly(3-alkylthiophene) derivatives. Ab initio quantum mechanical calculations on simple model compounds were used to predict the regiochemistry of the polymer chain, which was in excellent agreement with the experimental observation, and the conformational preferences of both the inter-ring dihedral angle and the bulky side group. Interestingly, calculations predict that the inter-ring dihedral angles adopt a syn-gauche conformation rather than the anti-gauche arrangement typically found in substituted polythiophenes. Thus, in this case the former conformation reduces the strong repulsive interactions induced by the bulky substituent. The lowest π-π transition energy derived from calculations on an idealized molecular model is in agreement with the experimental estimation determined using UV-vis spectroscopy. This electronic property is significantly higher for poly(2-thiophen-3-yl-malonic acid dimethyl ester) than for other substituted polythiophene derivatives, which is consequence of the geometrical distortions induced by bulky side group.  相似文献   

19.
We outline the details of acquiring quantitative 13C cross‐polarization magic angle spinning (CPMAS) nuclear magnetic resonance on the most ubiquitous polymer for organic electronic applications, poly(3‐hexylthiophene) (P3HT), despite other groups' claims that CPMAS of P3HT is strictly nonquantitative. We lay out the optimal experimental conditions for measuring crystallinity in P3HT, which is a parameter that has proven to be critical in the electrical performance of P3HT‐containing organic photovoltaics but remains difficult to measure by scattering/diffraction and optical methods despite considerable efforts. Herein, we overview the spectral acquisition conditions of the two P3HT films with different crystallinities (0.47 and 0.55) and point out that because of the chemical similarity of P3HT to other alkyl side chain, highly conjugated main chain polymers, our protocol could straightforwardly be extended to other organic electronic materials. Variable temperature 1H NMR results are shown as well, which (i) yield insight into the molecular dynamics of P3HT, (ii) add context for spectral editing techniques as applied to quantifying crystallinity, and (iii) show why TH, the 1H spin–lattice relaxation time in the rotating frame, is a more optimal relaxation filter for distinguishing between crystalline and noncrystalline phases of highly conjugated alkyl side‐chain polymers than other relaxation times such as the 1H spin–spin relaxation time, T2H, and the spin–lattice relaxation time in the toggling frame, T1xzH. A 7 ms TH spin lock filter, prior to CPMAS, allows for spectroscopic separation of crystalline and noncrystalline 13C nuclear magnetic resonance signals. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

20.
Block copolymers of regioregular poly(3-hexylthiophene) (P3HT) and polyethylene (PE) were synthesized through the chain transfer of olefin-terminated P3HT in the presence of cyclooctene via ring-opening metathesis polymerization (ROMP). Subsequent hydrogenation of the poly(cyclooctene) block yielded high molecular weight, crystalline-crystalline P3HT-PE block copolymers, which are thermally stable and resistant to solvents under ambient conditions. These copolymers were characterized by 1H NMR, DSC, and WAXS and represent the first materials of a class of crystalline-crystalline semiconducting-insulating block copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号