首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient method is proposed for modeling time harmonic acoustic propagation in a nonuniform lined duct without flow. The lining impedance is axially segmented uniform, but varies circumferentially. The sound pressure is expanded in term of rigid duct modes and an additional function that carries the information about the impedance boundary. The rigid duct modes and the additional function are known a priori so that calculations of the true liner modes, which are difficult, are avoided. By matching the pressure and axial velocity at the interface between different uniform segments, scattering matrices are obtained for each individual segment; these are then combined to construct a global scattering matrix for multiple segments. The present method is an improvement of the multimodal propagation method, developed in a previous paper [Bi et al., J. Sound Vib. 289, 1091-1111 (2006)]. The radial rate of convergence is improved from O(n(-2)), where n is the radial mode indices, to O(n(-4)). It is numerically shown that using the present method, acoustic propagation in the nonuniform lined intake of an aeroengine can be calculated by a personal computer for dimensionless frequency K up to 80, approaching the third blade passing frequency of turbofan noise.  相似文献   

2.
The dispersion equation for the axisymmetric modes of viscothermal acoustic wave propagation in uniform hard-walled circular ducts containing a quiescent perfect gas is classical. This has been extended to cover the non-axisymmetric modes and real fluids in contemporary studies. The fundamental axisymmetric mode has been the subject of a large number of studies proposing approximate solutions and the characteristics of the propagation constants for narrow and wide ducts with or without mean flow is well understood. In contrast, there are only few publications on the higher order modes and the current knowledge about their propagation characteristics is rather poor. On the other hand, there is a void of papers in the literature on the effect of the mean flow on the quiescent modes of propagation. The present paper aims to contribute to the filling of these gaps to some extent. The classical theory is re-considered with a view to cover all modes of acoustic propagation in circular ducts carrying a real fluid moving axially with a uniform subsonic velocity. The analysis reveals a new branch of propagation constants for the axisymmetric modes, which appears to have escaped attention hitherto. The solution of the governing wave equation is expressed in a modal transfer matrix form in frequency domain and numerical results are presented to show the effects over wide ranges of frequency, viscosity and mean flow parameters on the propagation constants. The theoretical formulation allows for the duct walls to have finite impedance, but no numerical results are presented for lined ducts or ducts carrying a sheared mean flow.  相似文献   

3.
When acoustic waves are scattered by random sound-speed fluctuations in a two-dimensional channel the energy is continually transferred between the propagating modes. In the multiple- scattering region the energy flux assumes an asymptotic form in which there is equal energy flux propagating in each mode. Here we shall make use of this well known result to show how to obtain an asymptotic form for a pulse of acoustic energy propagating in the channel. In the multiple-scattering region the speed of the acoustic waves in the pulse continually changes as the energy is transferred between the modes. The process is basically a diffusion process around the mean speed of propagation. We shall first show, using physical arguments, that the diffusion coefficient is proportional to the square root of the propagation distance times the mean free path of scattering. The theory governing the acoustic propagation in the channel is formulated in terms of modal coherence equations and we shall next give a brief review of the definitions of the coherence functions and a discussion of how the equations governing the propagation of the modal coherence functions are derived. We shall then show how the pulse shape and the relevant parameters may be obtained by solving the basic modal coherence equations at large propagation distances.  相似文献   

4.
光子晶体光纤中布里渊散射声波模式特性的分析   总被引:1,自引:0,他引:1       下载免费PDF全文
侯尚林  薛乐梅  黎锁平  刘延君  徐永钊 《物理学报》2012,61(13):134206-134206
推导了光子晶体光纤中声波微小位移波动方程; 研究了泵浦波长以及纤芯折射率对声波模式的影响; 应用石英圆柱模型研究了小芯径光子晶体光纤中纤芯直径对布里渊声波模式色散的影响. 结果表明在光子晶体光纤中, 纵向声波和横向声波共同作用产生质点声场, 两者相互耦合将产生混合声波模式; 可以通过改变泵浦波长或光子晶体光纤纤芯折射率来改变参与布里渊散射(BS) 过程的声波模式的传播常数; 随着光子晶体光纤(PCF) 纤芯直径的增大, 声波模式耦合程度得到加强, 相速度呈减小趋势, 且同一传播常数下, 声波模式数呈增多趋势; 随着泵浦波频率的增大, 声波相速度减小.  相似文献   

5.
气动声学的声比拟理论以密度、声压等标量为波动算子变量,建立非齐次波动方程,描述流体运动及与边界作用诱发声音的辐射,但标量无法直接描述声能量的传播过程和途径.在流体力学研究中,标量用于描述当前当地的物质状态,而矢量用于描述质量和能量的传输.借鉴上述思想,开展了矢量气动声学的研究,概述矢量气动声学的理论研究进展及应用,主要包括:(1)以声粒子速度为变量,采用声比拟理论的思想直接从Navier-Stokes方程出发推导建立了气动声学的矢量波动方程及两种频域解;(2)综合利用声压和声粒子速度的积分解,直接求解声源周围的瞬时和有功声强矢量场,直观显示声能量的传播途径,应用于旋转声源辐射声能量的传播分析,揭示了亚音速旋转声源辐射声能量的3种传播模式:螺旋模式、声学黑洞模式和R-A模式;(3)采用球谐级数展开方法建立旋转点/紧凑声源辐射噪声的声压和声粒子速度的频域解析解,在此基础上推导了声功率谱的频域解析解,建立了识别旋转叶片声源在空间域和频域分布特征的方法;(4)综合利用矢量气动声学方法和等效源方法,显示声源和散射边界周围声强矢量场的分布特征和能量传播途径,直接揭示了阻抗边界主要的吸声位置以及直接计算得到阻抗边界的吸收声功率.   相似文献   

6.
This paper deals with experimental investigation of the lined wall boundary condition in flow duct applications such as aircraft engine systems or automobile mufflers. A first experiment, based on a microphone array located in the liner test section, is carried out in order to extract the axial wavenumbers with the help of an "high-accurate" singular value decomposition Prony-like algorithm. The experimental axial wavenumbers are then used to provide the lined wall impedance for both downstream and upstream acoustic propagation by means of a straightforward impedance education method involving the classical Ingard-Myers boundary condition. The results show that the Ingard-Myers boundary condition fails to predict with accuracy the acoustic behavior in a lined duct with flow. An effective lined wall impedance, valid whatever the direction of acoustic propagation, can be suitably found from experimental axial wavenumbers and a modified version of the Ingard-Myers condition with the form inspired from a previous theoretical study [Aure?gan et al., J. Acoust. Soc. Am. 109, 59-64 (2001)]. In a second experiment, the scattering matrix of the liner test section is measured and is then compared to the predicted scattering matrix using the multimodal approach and the lined wall impedances previously deduced. A large discrepancy is observed between the measured and the predicted scattering coefficients that confirms the poor accuracy provided from the Ingard-Myers boundary condition widely used in lined duct applications.  相似文献   

7.
Long R  Lowe M  Cawley P 《Ultrasonics》2003,41(7):509-519
The attenuation of the fundamental non-torsional modes that propagate down buried iron water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within the pipe. The established acoustic technique used to locate leaks in buried iron water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode. Experiments have been conducted on buried water mains at test sites in the UK to verify the attenuation and velocity dispersion predictions.  相似文献   

8.
声波测井压电振子的有限元分析   总被引:2,自引:2,他引:0       下载免费PDF全文
压电振子是新一代方位声波测井仪器中相控圆弧阵声波辐射器的重要组成部分。利用有限元法对构成圆弧阵的压电振子进行了设计分析,结果显示了压电振子存在多阶弯曲振动模态,且长度方向一阶弯曲振动能够满足方位声波测井的工作频率要求。针对长度方向一阶弯曲振动模式,数值模拟了几何尺寸对压电振子性能参数的影响。压电振子的谐振频率随着陶瓷片长度、基片或陶瓷片厚度的减小而降低;压电振子的辐射声功率随着陶瓷片长度或压电振子宽度的增加、基片或陶瓷片厚度的减小而增大;合理地选取长度和厚度可使压电振子具有较高的机电耦合系数。数值模拟结果可以对圆弧阵结构优化设计起到良好的指导作用。  相似文献   

9.
本文推导了四边简支矩形板的辐射阻抗表达式, 利用高斯数值积分方法, 计算了其相对辐射阻抗的数值解. 由不同模态下相对辐射阻抗与频率以及不同长宽比对应的相对辐射阻抗与频率的关系可知, 在中低频段, 模态越低, 辐射阻抗越大, 也就意味着辐射声功率和同振质量越大; 对于一定面积和模态的矩形板, r (r=a/b, 长与宽之比)值越接近1, 即越接近正方形, 辐射阻和辐射抗越大. 本文的方法能对其他复杂边界条件下的、无振动解析解的矩形板的辐射阻抗数值量级大小提供一个参考, 也可由计算弯曲振动的阻抗自然地过渡到活塞振动阻抗的计算.  相似文献   

10.
《Physics letters. A》1998,239(6):378-384
The propagation of the dust ion acoustic and dust acoustic modes in a dusty plasma is studied. The effect of the coupling of the charge fluctuation on the dust particles to the modes is taken into account self-consistently. It is found that the charge fluctuation leads to frequency down shift as well as dissipation of the modes. For the dust ion acoustic modes, these are significant only when the frequency characterizing the rate of capture of electrons by the dust particles in the equilibrium state is of the order of the frequency of the mode, and the mode can propagate without significant dissipation only when its frequency is well above this characteristic frequency. For the dust acoustic modes, these are significant only when the frequency characterizing the rate of capture of ions by the dust particles in the equilibrium state is of the order of the frequency of the mode, and the mode can propagate without significant dissipation only when its frequency is well above this characteristic frequency.  相似文献   

11.
In the present study, a hybrid method is proposed for predicting the acoustic performance of a silencer for a nonlinear wave. This method is developed by combining two models: (i) a frequency-domain model for the computation of sound attenuation due to a silencer in a linear regime and (ii) a wavenumber space model for the prediction of the nonlinear time-evolution of finite amplitudes of the acoustic wave in a uniform duct of the same length as the silencer. The present method is proposed under the observation that the physical process of the nonlinear sound attenuation phenomenon of a silencer may be decoupled into two distinct mechanisms: (a) a linear acoustic energy loss that owes to the mismatch in the acoustic impedance between reactive elements and/or the sound absorption of acoustic liners in a silencer; (b) a nonlinear acoustic energy loss that is due to the energy-cascade phenomenon that arises from the nonlinear interaction between components of different frequencies. To establish the validity of the present model for predicting the acoustic performance of silencers, two model problems are considered. First, the performance of simple expansion mufflers with nonlinear incident waves has been predicted. Second, proposed method is applied for computing nonlinear acoustic wave propagation in the NASA Langley impedance duct configuration with ceramic tubular liner (CT57). Both results obtained from the hybrid models are compared with those from computational aero-acoustic techniques in a time-space domain that utilize a high-order finite-difference method. Through these comparisons, it is shown that there are good agreements between the two predictions. The main advantage of the present method is that it can effectively compute the nonlinear acoustic performance of silencers in nonlinear regimes without time-space domain calculations that generally entail a greater computational burden.  相似文献   

12.
Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard–Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.  相似文献   

13.
初敏  徐旭 《声学学报》2016,41(2):236-242
为了研究微穿孔板吸声结构对不稳定燃烧的抑制作用,采用高精度的计算气动声学(Computational Aeroacoustics,CAA)方法开展时域下的数值仿真。首先对带有压力时滞模型的三维声学扰动方程进行求解,给出发动机不稳定燃烧的频率信息。然后通过解析模型分析微穿孔板吸声结构的阻抗特性,并由多自由度宽频阻抗模型模拟微穿孔板对该不稳定频率的抑制作用。仿真捕捉到的不稳定燃烧频率与地面试车测得的频率相一致。表明采用的计算气动声学方法及相应模型可以准确地捕捉不稳定燃烧的频率信息,并分析微穿孔板对不稳定燃烧的抑制作用,对于工程上快速预测不稳定燃烧具有一定意义。   相似文献   

14.
Multi-chamber perforated resonator (MCPR) is a kind of typical silencer element which can both attenuate broadband noise and satisfy specific installation requirements. The one-dimensional transfer matrix method (TMM) and finite element method (FEM) are widely used to predict the transmission loss of the resonators. This paper mainly focuses on the comparison between 1D TMM and FEM in which detailed perforation modeling is applied for the acoustic modeling of MCPRs. Five resonators with different acoustic attenuation frequency ranges are built for simulation and test. In order to verify the results of the above methods, a transmission loss test facility is designed based on two-load method. Through adjusting the distance between microphones, the facility’s effective measurement frequency can be changed. The results show that despite of the complex modeling and calculation, FEM with detailed perforation modeling shows good consistency with test results in both frequency and amplitude within entire frequency range. In comparison, TMM is limited by the cut-off frequency when calculating transmission losses. Besides, accuracy of TMM in low frequency range is also affected by perforation conditions. However, TMM is time-saving in calculation and structure optimization. In MCPRs’ development process, TMM can be used to quickly design and optimize structure parameters while FEM can be used to verify the acoustic performance before prototyping.  相似文献   

15.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

16.
利用矢量有限元法,数值模拟了不同结构参数下光子晶体光纤中空气孔填充率与去极化型声波导布里渊散射频移的关系,以及布里渊散射频移与布里渊散射效率的关系。研究结果表明,空气孔填充率的增大会导致扭转径向模式的去极化型声波导布里渊散射频移下移。空气孔节距或纤芯直径一定时,高阶模式的频移对空气孔填充率的变化更为敏感。扭转径向模式的去极化型布里渊散射效率都随布里渊散射频移的增大而增大。  相似文献   

17.
The anisotropic propagation of surface acoustic modes in GaN and AlN induced by the c-sapphire substrate is presented. In the GaN case, the slow acoustic propagation velocity of GaN compared with sapphire leads to guided modes in the overlayer, which propagate at higher velocities but are more attenuated than the Rayleigh mode. Above the transonic state, pseudo-SAW modes are observed, some of them with low insertion losses. In contrast, only the Rayleigh mode is observed in AlN filters due to its higher acoustic propagation velocity with respect to sapphire. The difference in the crystal structure of the sapphire and the nitrides induces a dependence of the sound velocity of all the modes, and hence their frequency, on the propagation direction. The simulations show very good agreement with the experimental data for both nitride/sapphire structures when the anisotropy induced by the substrate is taken into account.  相似文献   

18.
For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose should be known. In this paper, a measurement technique is proposed that is valid over the low frequency range in the absence of mean flow. The impedance measurement is performed in two stages. The first stage of impedance measurement is performed in a cylindrical apparatus, within which a short specimen of given ‘porous frequency’ is laid. Because the predicted transmission loss (TL) does not agree with the measured one, due to error in the measured resistance, the second stage of impedance measurement is attempted to estimate the resistance from the measured reactance in the first stage and the measured TL data. Using such new impedance data measured in the second stage for the prediction of TL for samples of different lengths, the agreement between measured and predicted TL is generally improved, as compared to the initial comparison in the first stage. When the curve-fitted impedance for an arbitrary porous frequency is used, it is shown that the measured TL for samples with both arbitrary length and porous frequency generally agree reasonably well with the predicted ones. Exceptions are samples which require the impedance to be extrapolated from measured results, or samples with highly inhomogeneous weaving and coating conditions, and in particular samples with low porous frequency.  相似文献   

19.
 利用声发射技术监测了颗粒填充聚合物材料含单边缺口试样承受三点弯曲载荷时裂纹尖端形成损伤并断裂的全过程,明显地区分了裂纹尖端起裂和扩展的不同阶段,有效地识别了颗粒填充聚合物材料的破坏模式。研究表明,在承载状态下,裂纹尖端损伤起始和扩展分为3个阶段,且裂纹起裂至快速扩展存在一个演变过程;结合SEM观察结果,判定该材料的断裂模式以颗粒与基材的界面分离为主。  相似文献   

20.
In this study, sound propagation through a circular duct with non-locally lining is investigated both numerically and experimentally. The liner concept is based on perforated screens backed by air cavities. Dimensions of the cavity are chosen to be of the order or bigger than the wavelength so acoustic waves within the liner can propagate parallel to the duct surface. This gives rise to complex scattering mechanisms among duct modes which renders the muffler more effective over a broader frequency range. This work emanates from the Cleansky European HEXENOR project which aim is to identify the best multi-cavity muffler configuration for reduction of exhaust noise from helicopter turboshaft engines. Here, design parameters are the cavity dimensions in both longitudinal and azimuthal directions. The best cavity configuration must in addition fit weight specifications which implies that the number of walls separating each cavity should be chosen as small as possible. To achieve these objectives, the scattering matrix of the lined duct section is obtained experimentally for two specific muffler configurations operating in multimodal propagation conditions. The good agreement with numerical predictions serves to validate the perforate plate impedance model used in our calculation. Finally, given an incident acoustic pressure which is representative of typical combustion noise spectrum, the best cavity configuration achieving the maximum overall acoustic Transmission Loss is selected numerically. The study also illustrates how the acoustic performances are dependent on the nature of the incident field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号