首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol−1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO2 thin films was observed (440 ng cm−2) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as COads, demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature.  相似文献   

2.
The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN)63−/4− obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films.  相似文献   

3.
Poly(3-methylthiophene) (P3MT)-based porous silicon (PS) substrates were fabricated and characterized by cyclic voltammetry, scanning electron microscopy, and auger electron spectroscopy. After doping urease (Urs) into the polymeric matrix, sensitivity and physicochemical properties of the P3MT-based PS substrate was investigated compared to planar silicon (PLS) and bulk Pt substrates. PS substrate was formed by electrochemical anodization in an etching solution composed of HF, H2O, and ethanol. Subsequently, Ti and Pt thin-films were sputtered on the PS substrate. Effective working electrode area (Aeff) of the Pt-deposited PS substrate was determined from a redox reaction of Fe(CN)63−/Fe(CN)64− redox couple in which nearly reversible cyclic voltammograms were obtained. The ip versus v1/2 plots showed that Aeff of the PS-based Pt thin-film electrode was 1.62 times larger than that of the PLS-based electrode.Electropolymerization of P3MT on both types of electrodes were carried out by the anodic potential scanning under the given potential range. And then, urease molecules were doped to the P3MT film by the chronoamperometry. Direct electrochemistry of a Urs/P3MT/Pt/Ti/PS electrode in an acetonitrile solution containing 0.1 mol/L NaClO4 was introduced compared to a P3MT/Pt/Ti/PS electrode at scan rates of 10 mV s−1, 50 mV s−1, and 100 mV s−1.Amperometric sensitivity of the Urs/P3MT/Pt/Ti/PS electrode was ca. 1.67 μA mM−1 per projected unit square centimeter, and that of the Urs/P3MT/Pt/Ti/PLS electrode was ca. 1.02 μA mM−1 per projected unit square centimeter in a linear range of 1-100 mM urea concentrations. 1.6 times of sensitivity increase was coincident with the results from cyclic voltammetrc analysis.Surface morphology from scanning electron microscopy (SEM) images of Pt-deposited PS electrodes before and after the coating of Urs-doped P3MT films showed that pore diameter and depth were 2 μm and 10 μm, respectively. Multilayered-film structures composed of metals and organics for both electrodes were also confirmed by auger electron spectroscopy (AES) depth profiles.  相似文献   

4.
In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H2O2), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H2O2 detection. The linear response range of the biosensor to H2O2 concentration was from 5 × 10−7 mol L−1 to 1.5 × 10−3 mol L−1 with a detection limit of 3.75 × 10−8 mol L−1 (based on S/N = 3).  相似文献   

5.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

6.
The electrochemical properties of undoped diamond polycrystalline films grown on tungsten wire substrates using methanol as a precursor are described. The diamond film quality was changed by introducing sp2-bonded non-diamond carbon impurity through adjustment of the methanol-to-hydrogen (C/H) source gas ratio used for diamond growth.The electrodes were characterized by Raman spectroscopy, scanning electronic microscopy (SEM) and cyclic voltammetry (CV).Diamond coated tungsten wires were then used as a working electrode to ascertain their electrochemical behavior in electrolytic medium. Electrochemical windows of these films were found to be suitable in the potential range of [−2.5 V, +2.2 V] vs. Ag/AgCl in acid medium (0.1 M KCl).The electrochemical behavior was evaluated also using the Fe(CN)63−/4−redox couple.The results demonstrate that the grain boundaries and sp2-hybridized carbon impurity can have a significant influence on electrochemical window of undoped diamond electrodes. It was observed that with increasing sp2 carbon impurity concentration the electrochemical window decreases.  相似文献   

7.
The electrochemical reactions of highly oriented pyrolytic graphite (HOPG) bulk and powder electrodes in 1 M LiPF6 1:1 EC/DMC solution were investigated and the results show that the intercalation reaction of lithium ion into HOPG electrode occurs only at the edge plane and SEI formation reaction on the basal plane is negligible in comparison with that on the edge plane. The active surface area of HOPG powder electrode could be deduced by comparing the peak area (consumed charge for SEI formation) at potential of 0.5 V on voltammograms with that of bulk HOPG edge electrode. The diffusion coefficients of lithium ion in HOPG bulk layers and in HOPG powder was for the first time measured by use of electrochemical impedance spectra and potential step chronamperameter methods. It was found that the diffusion coefficients of lithium in HOPG were in the range of 10−11-10−12 cm2 s−1 for the lithium-HOPG intercalation compounds at potentials from 0.2 (vs. Li/Li+) to 0.02 V, decreasing with the increase of lithium intercalation degree. A good agreement was obtained between the results from bulk and powder HOPG electrodes by electrochemical impedance spectra method.  相似文献   

8.
This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10−10 to 1.0 × 10−6 mol/L, and a detection limit of 3.1 × 10−11 mol/L.  相似文献   

9.
In this work a new membrane electrode based on Pt-coated Nafion membrane was fabricated. Chemical deposition process was used to coat platinum on Nafion 117 membrane and then Pt-coated Nafion membrane was hot pressed on gas diffusion layer (GDL) to make new membrane electrode. The electrochemical and chemical studies of the Pt-coated Nafions were investigated by electrochemical techniques, X-ray diffraction and scanning electron microscopy. The electrochemical results indicated that as the concentration of H2PtCl6 increased, the oxygen reduction reaction rate increased until the concentration was reached where the reduction reaction was limited by the problem of mass transport. The electrochemical results for oxygen reduction reaction showed that the new electrode which prepared by plating Nafion membrane with 0.06 M H2PtCl6 in electroless plating solution, has a higher performance than other electrodes. The XRD results showed that the average platinum particle size of the best sample was about 3 nm. The loading of platinum for this electrode was 0.153 mg cm−2.  相似文献   

10.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

11.
By ablating titanium containing In2O3 target with a KrF excimer laser, highly conducting and transparent films on quartz were obtained to investigate the effects of growth temperature and oxygen pressure on the structural, optical and electrical properties of these films. We find that the transparency of the films depends more on the growth temperature and less on the oxygen pressure. Electrical properties, however, are found to be sensitive to both the growth temperature and oxygen pressure. We report in this paper that a growth temperature of 500 °C and an oxygen pressure of 7.5 × 10−7 bar lead to titanium-doped indium oxide films which have high mobility (up to 199 cm2 V−1 s−1), low resistivity (9.8 × 10−5 Ω cm), and relatively high transmittance (∼88%).  相似文献   

12.
A series of boron-doped diamond (BDD) electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) with different compositions of CH4/H2/B(OCH3)3 gas mixture. A maximum growth rate of 0.65 mg cm−2 h−1 was obtained with CH4/H2/B(OCH3)3 radio of 4/190/10 and this growth condition was also a turning point for discharge plasma stability which arose from the addition of B(OCH3)3 that changed electron energy distribution and influenced the plasma reaction. The surface coating structure and electro-catalytic performance of the BDD electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Hall test, and electrochemical measurement and electro-catalytic oxidation in phenol solution. It is suggested that the boron doping level and the thermal stress in the films are the main factors affecting the electro-catalytic characteristics of the electrodes. Low boron doping level with CH4/H2/B(OCH3)3 ratio of 4/199/1 decreased the films electrical conductivity and its electro-catalytic activity. When the carrier concentration in the films reached around 1020 cm−3 with CH4/H2/B(OCH3)3 ratio over a range of 4/195/5-4/185/15, the thermal stress in the films was the key reason that influenced the electro-catalytic activity of the electrodes for its effect on diamond lattice expansion. Therefore, the BDD electrode with modest CH4/H2/B(OCH3)3 ratio of 4/190/10 possessed the best phenol removal efficiency.  相似文献   

13.
We report on the modification of ferroelectric hysteresis in Pb(Nb,Zr,Ti)O3 thin films under the adsorption of CO2 gas. The samples were exposed to the gas in ultra high vacuum while different voltages between the top (Ag) and bottom (Pt) electrodes were applied. After dosing, the samples were heated from room temperature at 1.8 K/s, and a mass spectrometer was used to detect the desorbed molecules. The effective molecular sticking was demonstrated by the appearance of the carbon Auger peak in the surface of the sample and by the presence of CO2 in the desorption curves. After +(−) 9.9 V were applied to the bottom electrode during dosing, we found a shift of −0.52 (+0.58) μC/cm2 in the remnant polarization. These evidences suggest the existence of a depolarizing field induced by molecular adsorption at the surface of the top electrode, and contribute to highlight the potential use of ferroelectric thin films as gas sensors.  相似文献   

14.
Spherical LiFePO4/C powders were synthesized by the conventional solid-state reaction method via Ni doping. Low-cost asphalt was used as both the reduction agent and the carbon source. An Ni-doped spherical LiFePO4/C composite exhibited better electrochemical performances compared to an un-doped one. It presented an initial discharge capacity of 161 mAhg−1 at 0.1 C rate (the theoretical capacity of LiFePO4 with 5 wt% carbon is about 161 mAhg−1). After 50 cycles at 0.5 C rate, its capacity remained 137 mAhg−1 (100% of the initial capacity) compared to 115 mAhg−1 (92% of the initial capacity) for an un-doped one. The electrochemical impedance spectroscopy analysis and cyclic voltammograms results revealed that Ni doping could decrease the resistance of LiFePO4/C composite electrode drastically and improve its reversibility.  相似文献   

15.
(Ba0.7Sr0.3)TiO3 (BST) ferroelectric thin films with perovskite crystal structure were fabricated by soft solution processing on a quartz substrate. The third-order nonlinear optical properties were investigated by using Z-scan technique. Positive nonlinear refractive index and nonlinear absorption coefficient were determined to be 4×10−7 esu and 1.2×10−6 m/w, respectively. The real part and imaginary part of third-order optical nonlinear susceptibility were calculated and the values were 6.43×10−8 and 5.14×10−8 esu, respectively. All of these results show ferroelectric BST thin film is promising for applications in nonlinear optical devices.  相似文献   

16.
Amino ion implantation was carried out at the energy of 80 keV with fluence of 5 × 1015 ions cm−2 for indium tin oxide film (ITO) coated glass, and the existence of amino group on the ITO surface was verified by X-ray photoelectron spectroscopy analysis and Fourier transform infrared spectra. Scanning electron microscopy images show that multi-wall carbon nanotubes (MWCNTs) directly attached to the amino ion implanted ITO (NH2/ITO) surface homogeneously and stably. The resulting MWCNTs-attached NH2/ITO (MWCNTs/NH2/ITO) substrate can be used as electrode material. Cyclic voltammetry results indicate that the MWCNTs/NH2/ITO electrode shows excellent electrochemical properties and obvious electrocatalytic activity towards uric acid, thus this material is expected to have potential in electrochemical analysis and biosensors.  相似文献   

17.
We report the formation of β′-Gd2(MoO4)3 (GMO) crystal on the surface of the 21.25Gd2O3-63.75MoO3-15B2O3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm−1, 240 cm−1, 466 cm−1, 664 cm−1 and 994 cm−1which belong to the MoO3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.  相似文献   

18.
Diamond-like carbon films (DLC) were deposited on titanium substrates in acetonitrile and N,N-dimethyl formamide (DMF) liquids by the liquid-phase electrodeposition technique at ambient pressure and temperature. The applied voltage between the electrodes was high (1200 V) due to the use of resistive organic liquids. The surface morphology was examined by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Corrosion performance of the coatings was investigated by potentiodynamic polararization tests in phosphate buffer saline solution. Raman spectroscopy analysis of the films revealed two broad bands at approximately 1360 cm−1 and 1580 cm−1, related to D and G-band of DLC, respectively. The coated Ti was tested in a ball-on-plate type wear test machine with Al2O3 balls. The films presented a low friction coefficient (about 0.1), and the films deposited from DMF presented the best wear resistance.  相似文献   

19.
dc reactive magnetron sputtering technique was employed for deposition of tantalum oxide films on quartz and silicon substrates by sputtering of pure tantalum target in the presence of oxygen and argon gases under various substrate temperatures in the range 303-973 K. The variation of cathode potential with the oxygen partial pressure was systematically studied. The influence of substrate temperature on the chemical binding configuration, crystal structure and optical properties was investigated. X-ray photoelectron spectroscopic studies indicated that the films formed at oxygen partial pressures ≥1 × 10−4 mbar were stoichiometric. The Fourier transform infrared spectroscopic studies revealed that the films formed up to substrate temperatures <673 K showed a broad absorption band at 750-1000 cm−1 and a sharp band at 630 cm−1 indicated the presence of amorphous phase while at higher substrate temperatures the appearance of bands at about 810 and 510 cm−1 revealed the polycrystalline nature. The effect of substrate temperature on the electrical characteristics of Al/Ta2O5/Si structure was investigated. The dielectric constant values were in the range 17-29 in the substrate temperature range of 303-973 K. The current-voltage characteristics showed modified Poole-Frenkel conduction mechanism with a tendency for reduction of the compensation level. The optical band gap of the films decreased from 4.44 to 4.25 eV and the refractive index increased from 1.89 to 2.25 with the increase of substrate temperature from 303 to 973 K.  相似文献   

20.
This study investigates the nonlinear optical properties of azo-dye-doped nematic and polymer-dispersed liquid crystal (ADDPDLC) films with nano-sized LC droplets using the Z-scan technique, which is a simple but powerful technique for measuring the optical Kerr constants of materials. The results indicate that the optical Kerr constant (n2) of the azo-dye-doped nematic LC (ADDLC) film is large because of the photoisomerization effect and the thermal effect. Therefore, the optical Kerr constant of this material can be modulated by varying the temperature of the sample and the direction of polarization of incident laser. The range of n2 modulated is from −5.26 × 10−3 to 1.62 × 10−3 cm2/W. The optical Kerr constants of ADDPDLC films at various temperatures are also measured. The experimental results reveal that liquid crystals in the ADDPDLC film strengthen the nonlinearity. The n2 of the ADDPDLC film is maximal at ∼35 °C, because of the decrease in the clearing temperature of the ADDPDLC films. The clearing temperatures of the liquid crystals (E7), and the ADDPDLC film used in this work were found to be 61 °C and 43 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号