首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
刺激响应性表面图案赋予了材料动态可调的表面性能,是智能材料领域研究的热点,然而如何通过简单有效的方法构建这类动态表面图案也是该领域的难点.本文将动态硼酸酯键和光可逆二聚基团引入到聚醚胺(PEA)交联网络中,通过双层褶皱体系构建一系列具有光和湿度刺激响应性表面褶皱图案.在365 nm紫外光照和加热的条件下,蒽基团(AN)的光二聚与硼酸键的形成使得上表层聚醚胺模量变大,产生微米级表面褶皱图案;在254 nm紫外光照射或水蒸气作用下,聚醚胺网络解交联,表面褶皱图案消失;利用光化学时空分辨的特性,通过光掩膜板光照还可以制备多层次动态表面褶皱图案.这种多重刺激响应性表面褶皱图案为构建智能聚合物表面提供了新思路,在传感和防伪等领域具有潜在的应用前景.  相似文献   

2.
《高分子学报》2021,52(10):1245-1261
微纳米图案赋予了材料表面独特的光学、电学、声学、力学以及生物学等特性,其中具有动态变化形貌的表面图案能够实现对材料表面性能原位实时调控,可用于构建智能表面.能够改变临时拓扑形貌并在外界刺激下恢复初始状态的一类动态表面材料称为图案记忆表面(pattern memory surface, PMS).PMS在浸润性调节、智能显示、电子器件和信息安全等多个领域具有重要的应用前景,涉及化学、物理、材料和生物多个学科交叉领域,是智能材料研究热点之一.然而,由于基底材料对高分子链在微观尺度上的运动具有束缚作用,如何构筑动态可调的拓扑形貌记忆表面一直是该领域面临的难题.基于此,本专论试图定义高分子材料图案记忆表面特征,并总结PMS有关研究的新进展.重点讨论基于褶皱图案构建PMS的优势,进而介绍了PMS作为智能材料在动态光栅、防伪、反射式显示、细胞培养等领域的应用,同时展望PMS的发展前景.  相似文献   

3.
郑明心  谭臻至  袁金颖 《化学进展》2022,34(11):2476-2488
Janus粒子通常由两种或两种以上不同物理或化学性质的部分组成,其结构的不对称性导致了粒子形貌和性质具有不对称性。与“静态”Janus粒子相比,具有刺激响应性的“动态”Janus粒子能够与环境发生相互作用,在外界刺激下表达特殊功能。光响应Janus粒子是一类可以在光刺激下发生特定响应的Janus粒子,其两侧不同的组成不仅可以结合多种类型的光响应性,也能与其他类型的刺激响应进行配合,从而实现对特定体系的精确调控。由于光能易于调节的特性,光响应Janus粒子可以与无机纳米团簇或有机官能团产生特定反应,具有光热效应、色彩调节、光动力治疗等独特特性。它们还可以应用于药物递送、生物传感与成像、微纳米马达和光致发光等领域,为解决生物医学和光学器件相关的问题提供了新的方法。本文主要介绍光响应Janus粒子近期发展的制备方法,并着重阐述其独特调控机理以及其在生物医药、发光材料等领域的突出应用,最后对目前该领域的发展前景做出展望。  相似文献   

4.
以3-甲基丙烯酰胺基苯硼酸(MAPBA)为聚合反应单体,通过数字微镜器件(DMD)调控光辐照引发表面原子转移自由基聚合(ATRP)反应制备苯硼酸(PMAPBA)聚合物刷微图案.采用光学显微镜、X射线光电子能谱测试(XPS)和飞行时间二次离子质谱测试(TOF-SIMS)对所制备微图案的几何形状、化学组成及分布进行表征,结果表明PMAPBA聚合物刷微图案在硅基体表面的成功制备.研究了PMAPBA聚合物刷微图案的pH和葡萄糖响应性并采用激光共聚焦显微镜对其结果进行表征分析,结果表明随着溶液pH值的升高,苯硼酸发生电离产生带负电的亲水离子会阻碍免疫球蛋白(IgG)而促进葡聚糖(dextran)在其表面的吸附;此外,当溶液中加入葡萄糖后,电离产生的亲水离子不断与葡萄糖结合而导致IgG分子的脱落.这种具有pH和葡萄糖双重响应性的PMAPBA聚合物刷图案化表面能够为动态生物活性表面和药物可控释放系统的制备提供新的途径.  相似文献   

5.
提出了基于叠氮功能化聚合物刷微图案制备生物素化梯度表面的方法 .通过数字微镜器件(DMD)调控光辐照引发表面原子转移自由基聚合(ATRP)反应,制备叠氮功能化的聚(2-(2-叠氮-2-甲基丙氧基)甲基丙烯酸乙酯)(PAMEMA)聚合物刷微图案,采用X射线光电子能谱仪(XPS)和飞行时间二次离子质谱仪(TOF-SIMS)对PAMEMA聚合物刷微图案的化学组成及分布进行表征,表明叠氮基团在聚合物刷图案化表面的区域选择性分布;以叠氮基团为反应位点,通过点击化学反应实现PAMEMA聚合物刷微图案表面的生物素化,借助荧光标记的链霉亲和素染色实验表征生物素在微图案表面的分布情况;以具有厚度变化的PAMEMA聚合物刷微图案为模板制备生物素表面,结果表明通过控制聚合物刷的厚度可以对微图案表面固定生物素分子的空间密度进行调控以实现具有复杂结构的生物素化梯度表面的成功制备.  相似文献   

6.
表面结构是影响固体材料物理和化学性质的重要因素,由于高表面能的晶面上存在更多的表面悬挂键等,高表面能晶面裸露的微纳米晶体一般表现出很好的物理和化学活性.近年来,科研工作者针对高能面微纳米晶体材料的制备及性能调控进行了大量的研究工作并取得了一定的进展.本文重点讨论了高能面裸露的金属氧化物半导体微纳米晶体的合成制备方法.主要以本课题组近年在该领域的研究为例,分别从晶体生长过程中的静电作用法、“帽”式试剂保护法、过饱和度调控法、动力学调控法及选择性化学刻蚀法等几个方面对高表面能晶面裸露的金属氧化物微纳米晶体的制备进行了系统的总结.  相似文献   

7.
以胱胺四酰肼为交联剂,将其与黄原胶在水溶液中进行酰胺化反应,通过"一步法"制备得到pH和还原刺激响应性纳米微凝胶;采用傅里叶红外光谱仪、核磁共振氢谱仪、动态激光光散射仪、扫描电镜和透射电镜对其结构和形貌进行了表征,研究了纳米微凝胶的性能及其药物控释效果。结果表明:该纳米微凝胶具有明显的pH和还原响应性。纳米微凝胶中含有游离的酰肼基团,可与阿霉素分子中的酮羰基反应形成pH敏感的酰腙键。胱胺四酰肼中的双硫键可在较高浓度的谷胱甘肽作用下还原,导致微凝胶交联结构被破坏,促使药物释放。该纳米微凝胶生物相容性良好,有望用作靶向释放抗癌药物载体。  相似文献   

8.
智能响应与自修复的层层组装聚合物膜   总被引:2,自引:0,他引:2  
陈栋栋  马莹  孙俊奇 《高分子学报》2012,(10):1047-1054
具有刺激响应性和自修复功能的复合膜是重要的仿生功能膜材料.层层组装是一种基于物质交替沉积而制备复合膜的方法,可以实现膜的结构和组成的精确调控.通过结构与组成的精确调控,基于层层组装制备的微米厚度的聚电解质厚膜可以对外界刺激产生快速有效的响应,因而在制备智能仿生膜材料方面具有重要的价值.本文以作者的研究结果为基础,阐明了基于层层组装的聚电解质膜可以成功用于制备湿度和温度响应的双结构自支持膜和高效的促动器及行走机器,以及自修复超疏水和划痕修复聚电解质膜.  相似文献   

9.
磁场-温度双重响应性复合微球的制备与表征   总被引:1,自引:0,他引:1  
采用部分还原共沉淀法制备了尺寸约为10 nm的Fe3O4磁性纳米粒子, 并用油酸对其进行表面改性, 通过无皂乳液聚合的方法将Fe3O4与温敏性N-异丙基丙烯酰胺-丙烯酰胺共聚物(PNIPAAm-co-Am)复合, 获得了具有磁场和温度双重响应的复合微球. 采用TEM, FTIR和XRD等方法研究了复合微球的结构与形貌, 分别采用动态激光光散射(DLS)和振动样品磁强计(VSM)表征了复合微球的温度响应性和磁场响应性. 结果表明, 所制备的Fe3O4/(PNIPAAm-co-Am)复合微球具有核壳结构, 尺寸约为100 nm, 该微球具有良好的磁响应性和温度响应性, 其最低临界溶解温度(LCST)约为40 ℃.  相似文献   

10.
结构化液体是近年来基于二元流体体系,利用固体粒子液/液界面自组装和堵塞相变构筑的一类非平衡态软物质材料,兼具固体的结构稳定性和液体的流动性.然而,受限于组装基元和成型方法,制备具有精准结构的智能结构化液体及衍生功能材料仍面临挑战.我们课题组在该领域开展了大量研究工作,在发展界面调控新机制,制备液体/固体新材料,以及实现材料器件新突破等方面取得了系列创新成果.本专论从固体粒子界面自组装机制出发,重点阐述了一种利用纳米粒子和聚合物液/液界面共组装制备纳米粒子表面活性剂,进而构筑结构化液体的普适策略;总结归纳了结构化液体在响应性调控、高效精准构筑以及功能材料制备等方面的研究进展;并对该领域面临的机遇和挑战做出展望.  相似文献   

11.
生物医用材料旨在通过调控材料和细胞之间的相互作用来实现组织的再生和修复。黏附过程直接决定了细胞是否能够充分发挥生物学性能,因此通过对材料表面的物理和化学改性来调控细胞黏附,对于生物材料具有至关重要的意义,也是非常活跃的研究热点。材料表面物理改性通常通过对包括表面粗糙度、形貌、模量和多孔结构等物理性质的调控,为细胞构建适合黏附的材料表面。而化学改性则借助于表面电荷及亲疏水性调控、促黏分子修饰等化学手段来提高材料表面与细胞间的相互作用力,进而促进细胞黏附。近年来,材料表面调控细胞黏附的研究取得了许多新的突破性进展。例如在传统的促黏分子表面修饰之外,人们逐步发现对促黏分子序构的精准调控也可以有效地提高材料表面的促黏性能。而刺激响应性表面则可以根据外界信号的刺激,使得材料表面在促黏和抗黏之间实现智能的转换。本文从物理改性、化学修饰、刺激响应性表面构建等角度出发,全面总结和讨论了材料表面性质对细胞黏附的调控作用,梳理了材料表面的设计思路,多种材料表面的修饰改性方法等最新进展,并展望了未来材料表面对细胞黏附的调控思路。  相似文献   

12.
扫描探针刻蚀技术主要利用原子力显微镜针尖和基底间的电、机械或热相互作用进行纳米级表面的成像、操纵和修饰,是一种简便、快速、精确的纳米结构制备技术.其中,扫描探针氧化刻蚀技术利用针尖与样品表面间形成的高度局域化水桥,通过电化学反应在材料表面制备微纳尺度结构,已被广泛用于制备纳米级功能化图案和微纳器件.本文对扫描探针氧化刻蚀过程的机理及其影响因素,如电压、针尖-样品间作用力、持续时间、相对湿度和扫描速度等进行了详细介绍,总结和梳理了利用这一技术制备微纳器件方面的工作,指出了其优点和存在的问题,并对其未来发展进行了展望.  相似文献   

13.
受猪笼草口缘区润滑效应启发,将低表面能液体注入高分子微纳米多孔结构中可构筑高分子固液复合界面.与超疏水固体界面相比,固液复合界面展现出独特的浸润性和黏附性.界面黏附是高分子复合材料重要的性质之一,实现界面黏附的精准调控对促进这类材料的发展和应用具有至关重要的作用.本文重点从稳定性调控、方向性调控以及原位可逆调控3个方面综述提升固液复合界面黏附可控性的工作,通过在表面微米结构中组装纳米层状及异质纳米层状结构,提高界面黏附的稳定性;使用界面薄层定向冷冻干燥法、激光刻蚀法以及复型法等方法,构筑具有取向结构的高分子固液复合界面,实现界面黏附的方向性调控;通过在界面中引入快速响应的智能基元,设计智能响应高分子固液复合界面,实现界面黏附的原位可逆调控.最后,概述了这类材料目前存在的问题并展望了其未来发展的方向.  相似文献   

14.
以正硅酸乙酯(TEOS)为硅源,制备介孔二氧化硅纳米微球(MSNs),利用原子转移自由基聚合(ATRP)技术在MSNs表面接枝聚甲基丙烯酸二甲胺乙酯(PDMAEMA)作为缓释开关,成为智能纳米容器(PDMAEMA-MSNs),装载防腐蚀剂-苯并三唑(BTA)验证其双重刺激响应性释放性能。采用透射电子显微镜(TEM)、热重分析(TGA) 、X-射线光电子能谱(XPS)以及傅里叶红外光谱(FT-IR)分析手段表征了MSNs的结构、形貌及表面功能化过程,并使用荧光光谱仪实时监测BTA在不同PH、温度下的释放过程。实验结果表明,智能纳米容器掺杂于SiOx/ZrOy中实现了BTA的双重响应性释放,形成Cu-BTA复合膜,起到铜金属防腐蚀的作用。  相似文献   

15.
以正硅酸四乙酯(TEOS)为硅源,制备介孔二氧化硅纳米微球(MSNs),利用原子转移自由基聚合(ATRP)技术在MSNs表面接枝聚甲基丙烯酸二甲氨基乙酯(PDMAEMA),以其作为缓释开关,构成智能纳米容器(MSNs-PDMAEMA)。通过在其中装载防腐蚀剂苯并三唑(BTA)来验证其双重刺激响应性释放性能。采用透射电子显微镜、热重分析、X-射线光电子能谱以及傅里叶变换红外光谱表征了MSNs的结构、形貌及表面功能化过程,并使用荧光光谱仪实时监测BTA在不同p H、温度下的释放过程。结果表明,智能纳米容器掺杂于Si Ox/Zr Oy中实现了BTA的双重响应性释放,形成Cu-BTA复合膜,起到铜金属防腐蚀的作用。  相似文献   

16.
自然界存在许多具有各向异性表面结构的生物,其表面表现出典型的对液体操控的方向性的差异。近年来,这种表面微结构的构筑引起了广泛的研究兴趣,已成为一个热点研究方向。天然的各向异性浸润表面是由复杂的异质微纳米结构组成,基于基础研究和应用推广的目的,可以将其简化为一些有序的方向性结构表面。本文介绍了现在应用广泛的几种各向异性微纳米分级结构的构筑方法,并对比分析其可行性。同时,文中还深入讨论了各向异性微纳米分级结构表面对于液体行为的调控。这种各向异性微纳米分级结构表面在微流体运输、微流控芯片等领域将有重要应用,也会对生命科学(比如生物芯片和重大疾病的早期诊断)、能源(比如电极材料的可控制备)和环境(比如污染物的分离及定向转化)等研究做出巨大的贡献。  相似文献   

17.
聚合物-纳米金复合物既具有金纳米粒子的光、电及催化性能,又具有聚合物的可加工性及对外界的刺激响应性,因此已成为高分子科学及材料科学研究的热点。本文主要介绍了我们实验室在聚合物-纳米金在油水界面的自组装及有序结构的构筑研究方面的相关工作:(1)利用界面聚合的方法制备侧链接枝亲水性金纳米粒子的聚苯乙烯及杂化聚合物在水溶液中的自组装;(2)亲水性金纳米粒子及疏水性聚合物(或疏水性磁性纳米粒子)在油水界面的自组装研究;(3)利用金纳米粒子为交联点制备具有温度响应性聚合物微凝胶的研究。  相似文献   

18.
蔡东海  刘欢  江雷 《化学通报》2014,77(8):743-751
自然界存在许多具有各向异性表面结构的生物,其表面表现出典型的对液体操控的方向性的差异。近年来,这种表面微结构的构筑引起了广泛的研究兴趣,已成为一个热点研究方向。天然的各向异性浸润表面是由复杂的异质微纳米结构组成,基于基础研究和应用推广的目的,可以将其简化为一些有序的方向性结构表面。本文介绍了现在应用广泛的几种各向异性微纳米分级结构的构筑方法,并对比分析其可行性。同时,文中还深入讨论了各向异性微纳米分级结构表面对于液体行为的调控。这种各向异性微纳米分级结构表面在微流体运输、微流控芯片等领域将有重要应用,也会对生命科学(比如生物芯片和重大疾病的早期诊断)、能源(比如电极材料的可控制备)和环境(比如污染物的分离及定向转化)等研究做出巨大的贡献。  相似文献   

19.
一维杂化纳米材料以其独特的物理化学性质,在电学、光学、催化等领域得到了广泛的应用。 其制备方法对一维杂化纳米材料性能的改变和调控显得至关重要。 模板法作为一种简单而普适的合成工艺,近几年来被广泛应用于纳米结构和纳米阵列的合成。 本文主要介绍了阳极氧化铝(AAO)模板法制备一维杂化纳米材料整体情况、AAO模板结合其他技术材制备材料的方法、一维杂化纳米材料在刺激响应性器件、能量存储与转换器件、催化等众多领域的应用。  相似文献   

20.
聚合物Janus微粒是指具有各向异性微观结构的微/纳米聚合物粒子。因在乳液稳定、聚合物混合、可控组装、生物医药、多相催化和功能涂层等领域有重要的应用价值,聚合物Janus微粒材料的可控制备和应用研究已成为新型多功能和智能高分子材料研究的前沿领域。本文首先归纳了聚合物Janus微粒在制备方法、环境响应类型和应用领域的最新进展,进而分析了不同制备方法的优缺点。表面选择性修饰、微流体合成技术、自组装和种子聚合等方法都可用于制备具有可控尺寸、微观结构和表面性质的聚合物Janus微粒,但纳米级微粒微观结构的精确控制和大量合成还存在一定的挑战。环境响应性多组分聚合物Janus微粒在自组装和药物控释方面有其特殊的优势,而简单高效的种子聚合法有望应用于工业生产聚合物Janus固体表面活性剂。预计天然和多功能型聚合物Janus微粒的制备和应用研究将会是未来发展的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号