首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we report on the self-organized growth of TiO(2) layers consisting of a highly aligned nanochannel morphology. We show that an electrochemical anodization process of Ti in a hot glycerol/K(2)HPO(4) electrolyte can be adjusted to yield these self-organized TiO(2) structures. The channel diameter and length are controllable by the anodization parameters. This directional structure can, for example, find application in dye-sensitized solar cells.  相似文献   

2.
In this report, the self-templating synthesis of polyaniline nanowires on prestructured aluminum is described, emphasizing that anodization and electropolymerization can occur at the same time by a single electrochemical process. The method is based on the principle that the anodization of predefined aluminum in H2SO4 leads to the formation of highly ordered porous alumina and aniline monomer can be electrochemically polymerized in the formed porous alumina by the anodic reaction. XPS analysis reveals that polyaniline nanowires prepared in this work is protonated emeraldine.  相似文献   

3.
硅纳米线阵列是利用太阳能解决能源和环境问题的重要材料,然而,可用于柔性器件和生物相容性器件的柔性硅纳米线阵列的制备方法非常有限。本文通过化学气相沉积,以及高分子转移的方法,成功制备了具有不同高分子层厚度的柔性硅纳米线阵列,并研究了高分子层厚度对柔性硅纳米线阵列光催化性能的影响。结果表明,高分子层厚度越小,柔性硅纳米线阵列的光催化性能越强。因此,利用本文提出的制备方法得到的高分子层厚度低至5 μm的柔性硅纳米线阵列,具有作为高效柔性太阳能电池和全光解水系统光电极的潜力。同时,该研究结果也为设计具有高效光能转换能力的柔性纳米线阵列提供了重要依据。  相似文献   

4.
Solution-grown zinc oxide nanowires   总被引:1,自引:0,他引:1  
We review two strategies for growing ZnO nanowires from zinc salts in aqueous and organic solvents. Wire arrays with diameters in the nanoscale regime can be grown in an aqueous solution of zinc nitrate and hexamethylenetetramine. With the addition of poly(ethylenimine), the lengths of the wires have been increased to 25 mum with aspect ratios over 125. Additionally, these arrays were made vertical by nucleating the wires from oriented ZnO nanocrystals. ZnO nanowire bundles have been produced by decomposing zinc acetate in trioctylamine. By the addition of a metal salt to the solution, the ZnO wires can be doped with a range of transition metals. Specifically, ZnO nanowires were homogeneously doped with cobalt and showed a marked deviation from paramagnetic behavior. We conclude by highlighting the use of these solution-grown nanowire arrays in dye-sensitized solar cells. The nanowire cells showed an improvement in the charge collection efficiency over traditional nanoparticle cells.  相似文献   

5.
Previous fiber-shaped solar cells are based on polymeric materials or dye-sensitized wide band-gap oxides. Here, we show that efficient fiber solar cells can be made from semiconducting nanostructures (e.g. CdSe) with smaller band-gap as the light absorption material. We directly grow a vertical array of CdSe nanowires uniformly around a core metal wire and make the device by covering the top of nanowires with a carbon nanotube (CNT) film as the porous transparent electrode. The CdSe-CNT fiber solar cells show power conversion efficiencies of 1-2% under AM 1.5 illumination after the nanowires are infiltrated with redox electrolyte. We do not use a secondary metal wire (e.g. Pt) as in conventional fiber-shaped devices, instead, the end part of the CNT film is condensed into a conductive yarn to serve as the secondary electrode. In addition, our CdSe nanowire-based photoelectrochemical fiber solar cells maintain good flexibility and stable performance upon rotation and bending to large angles.  相似文献   

6.
低频交流电沉积金纳米线阵列的AFM研究   总被引:3,自引:0,他引:3  
迄今,人们已采用许多方法制备纳米材料,如刻蚀技术、化学法和模板法等[1].其中,引起科学界广泛兴趣的模板法,在合成有序纳米材料上占有极其重要的地位.常用的模板有两种,一种是有序孔洞阳极氧化铝(Anodic Aluminum Oxide,AAO)模板[2],另一种是含有孔洞无序分布的高分子模板.AAO模板具有耐高温,绝缘性好,孔洞分布均匀有序,而且大小可控等特点[3].可以利用 AAO模板来制备各种纳米纤维和纳米管,如导电聚合物[4]、金属[5]、半导体[6]、碳[7]和其它一些材料.由于纳米材料的应用具有广阔的前景,如光催化、电化学、酶固定等方面,因而不同材料纳米线的制备备受关  相似文献   

7.
Porous anodic alumina oxide (AAO) is one of the most commonly used nanotemplates for growing arrays of nanoparticles, nanowires, nanocomposites, and nanoarchitectures because its pores, which are of a very uniform size, can grow longitudinally into arrays of self-aligned nanochannels with an extremely high aspect ratio. Furthermore, under specific combinations of anodization voltage and electrolyte, the lateral positions of nanochannels can self-organize into arrays of two-dimensional hexagonally close-packed lattices with domain sizes on the order of few tens of lattice units. The domain size can be greatly increased by prepatterning the Al surface with custom-designed nanoconcaves prior to the anodization process. The concaves guide the growth fronts of nanochannels and lead to the formation of an ideally long-range ordered lattice of nanochannel array. Such concaves have been fabricated by many methods, such as stamp imprinting, grating imprinting, and focused ion beam direct writing. In this review, we summarize the development of various methods to create AAO nanochannel arrays with custom-made geometry and discuss the mechanism responsible for the guiding process.  相似文献   

8.
本文对合成TiO2一维纳米材料及其有序纳米阵列的阳极氧化法、模板法以及水热法进行了全面而系统的评述,着重介绍了它们的最新研究进展。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑TiO2纳米结构及其在纳米器件上的应用;与多种制备技术如溶胶-凝胶工艺、电化学沉积以及原子层沉积等相结合,模板法可以合成出多种形貌的TiO2纳米材料如纳米管、纳米线和纳米棒,并且可以通过改变所用模板的微观尺寸来调控TiO2一维纳米材料及其有序阵列的微结构参数;水热合成法可以制备出直径小且比表面积大的TiO2纳米管粉末。从目前来看,该法还不能制备出牢固负载于基体上的有序纳米阵列。文章最后指出了TiO2一维纳米材料及其有序纳米阵列合成中存在的问题及今后发展方向。  相似文献   

9.
Spatial bandgap engineering along single alloy nanowires   总被引:1,自引:0,他引:1  
Bandgap engineering of semiconductor nanowires is important in designing nanoscale multifunctional optoelectronic devices. Here, we report a facile thermal evaporation method, and realize the spatial bandgap engineering in single CdS(1-x)Se(x) alloy nanowires. Along the length of these achieved nanowires, the composition can be continuously tuned from x = 0 (CdS) at one end to x = 1 (CdSe) at the other end, resulting in the corresponding bandgap (light emission wavelength) being modulated gradually from 2.44 eV (507 nm, green light) to 1.74 eV (710 nm, red light). In spite of the existing composition (crystal lattice) transition along the length, these multicolor nanowires still possess high-quality crystallization. These bandgap engineered nanowires will have promising applications in such as multicolor display and lighting, high-efficiency solar cells, ultrabroadly spectral detectors, and biotechnology.  相似文献   

10.
In the present work, we show that fully functional self-organized TiO(2) nanotube layers can be electrochemically grown with an unprecedented growth rate if lactic acid (LA) is used as an additive during anodization. The main effect of LA addition is that it allows performing nanotube growth at significantly higher anodization voltage than in the LA free case, and this without dielectric oxide breakdown ("burning"). As a result, for example, 15 μm tube thick nanotube layers, suitable for a use in dye-sensitized solar cells (DSSCs) can be grown in 45 s and 7 μm tubes suitable for water splitting can be grown in 25 s.  相似文献   

11.
Single-crystalline uniform Ta(2)O(5) nanowires are prepared by a novel synthetic route. The formation of the nanowires involves an oriented attachment process caused by the reduction of surface energy. The nanowires are successfully applied to photocatalytic H(2) evolution, contaminant degradation, and dye-sensitized solar cells (DSCs). The Ta(2)O(5)-based DSCs reveal a significant photovoltaic response, which has not been reported. As a photocatalyst, the Ta(2)O(5) nanowires possess high H(2) evolution efficiency under Xe lamp irradiation, nearly 27-fold higher than the commercial powders. A better performance of photocatalytic contaminant degradation is also observed. Such improvements are ascribed to better charge transport ability for the single-crystalline wire and a higher potential energy of the conduction band. This new synthetic approach using a water-soluble precursor provides a versatile way to prepare nanostructured metal oxides.  相似文献   

12.
The magnetic NiFex nanowires were prepared via template-guided electrodeposition. Anodized nanoporous aluminum was used as a template. The pore density and dimensions of alumina templates can be controlled by anodization conditions. Magnetic nanorods (or nanowires) with various aspect ratios were prepared by controlling the electrodeposition time. SEM and TEM micrographs revealed the wire and rod shape morphologies with 50 nm in diameter and 1.5 ~ 10 μm in length. Elemental analysis and ESCA studies suggested that NiFe3 magnetic alloy was formed. The X-ray diffraction pattern indicates that all the nanowires are stabilized in a BCC structure with a [1 1 0] texture oriented along the long axis of the nanowires. The magnetic measurement showed no hysteresis loops for the whole aspect ratios of the nanowires. Nevertheless, the magnetization is more temperature sensitive for nanowires with lower aspect ratio. This is caused by the fact that the easy magnetization axis is always parallel to the long axis of the nanowires.  相似文献   

13.
Gold nanorods are anisotropic and exhibit different optical characteristics in both transverse and longitudinal directions, so the plasmon resonance in the near‐infrared region will reflect two absorption peaks. Because of strong enhancements of electromagnetic fields of gold nanorods, gold nanorods are widely used in medical treatment, biological detection, sensors, solar cells and other fields. Since rapid developments of gold nanorods, it is necessary to sort out the recent achievements. In this review, we select three classifications of single nanorods/nanowires, dimers and assembled nanorods to introduce their syntheses methods, optical properties and applications respectively. We firstly overview the history of nanorods/nanowires syntheses and summarize the improvement of the commonly utilized seed‐mediated growth synthesis method; and then, physically, nano‐plasmonic and optical properties of single and assembled nanorod/nanowires are concluded in detail. Lastly, we mainly summarize the recent advances in applications and provide perspective in different fields.  相似文献   

14.
15.
钴纳米线的模板制备与磁性   总被引:5,自引:0,他引:5  
利用二次阳极氧化法制备了多孔阳极氧化铝模板. 用直流电化学沉积方法成功地在模板孔道内制备了钴纳米线. 采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和振动样品磁强计(VSM)对样品的形貌、晶体结构和磁性进行了研究. 结果表明, 模板的孔径均匀, 孔道平直. 钴纳米线为多晶的六方密堆积结构. 钴纳米线具有明显的磁各向异性, 这主要起源于纳米线的形状各向异性.  相似文献   

16.
二氧化钛因其在光催化、染料敏化太阳电池、生物医药等应用领域表现出优异性能而成为材料科学领域重点研究的化合物之一。本文介绍了近年来阳极氧化法制备不同形貌的TiO2纳米管(TiO2NTs)阵列,探讨了电解液、阳极氧化时间、电压三个因素对TiO2纳米管形貌的影响,综述了掺杂、复合、表面修饰这三种能对TiO2纳米管进行化学或物理修饰的改性手段以及改性后的TiO2纳米管阵列在光催化、太阳能电池、生物医学、传感等领域的应用研究进展。最后,指出国内外针对二氧化钛纳米管阵列研究现状所存在的问题,并对今后的研究工作提出了展望。  相似文献   

17.
纳米材料,包括尺寸为纳米量级的超细微粒?线?薄膜?量子阱和超晶格等引起了人们广泛的重视 [1,2] ?其中 , 半导体纳米微粒和由其构成的纳米固体结构开辟了材料科学研究的新领域?硫化镉 (CdS) 作为一种重要的Ⅱ - Ⅵ族无机半导体材料 , 具有独特的光电性质 , 在光电化学电池和多相光催化反应中都有广泛应用?近年来 , 已有大量关于合成 CdS 纳米结构的文献报导 [3~12] , 所采用的方法如反胶束法?单分子膜法?自组装法以及电化学沉积法等 , 其中非水电解与模板技术相结合的制备方法引起了人们高度的重视并且被广泛的采用?自从 Baranski 等在上…  相似文献   

18.
Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm in inner pore diameter,and 20 nm in wall thickness were obtained by 40 V potentials anodization for 24 h.Their microstructures and surface morphologies were characterized by XRD,TEM,SAED and UV-vis spectroscopy.The photoelectrochemical properties of as-prepared unsensitized and dye-sensitized TNAs electrodes were examined under simulated solar light (AM 1.5,100 mW/cm2) illumination.The results showed that the photocurrent of the dye-sensitized TNAs electrodes reached 6.9 mA/cm2,which was 6 times more than that of the dye-sensitized TiO2 nanoparticles (TNPs) electrodes.It implied that the electron transport process and the charge recombination suppression within TNAs electrodes were much more favorable in comparison with that in the TNPs electrodes.Electrodes applying such kind of titania nanotubes will have a potential to further enhance the efficiencies of TNAs-based dye-sensitized solar cells.  相似文献   

19.
本文对合成TiO2一维纳米材料及其有序纳米阵列的阳极氧化法、模板法以及水热法进行了全面而系统的评述,着重介绍了它们的最新研究进展。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑TiO2纳米结构及其在纳米器件上的应用;与多种制备技术如溶胶-凝胶工艺、电化学沉积以及原子层沉积等相结合,模板法可以合成出多种形貌的TiO2纳米材料如纳米管、纳米线和纳米棒,并可以通过改变所用模板的微观尺寸来调控TiO2一维纳米材料及其有序阵列的微结构参数;水热合成法可以制备出直径小且比表面积大的TiO2纳米管粉末。但从目前看来,该法还不能制备出牢固负载于基体上的有序纳米阵列。文章最后指出了TiO2一维纳米材料及其有序纳米阵列合成中存在的问题及今后发展方向。  相似文献   

20.
Porous ZnO nanowires were obtained in an inexpensive and simple way by thermally oxidizing ZnSe nanowires in air. The morphologies of the precursor and resulted nanowires are almost identical. X-ray diffraction and energy-dispersive X-ray spectroscopy reveal that the zinc blende ZnSe nanowires were transformed into wurtzite ZnO nanowires after oxidation. Transmission electron microscope measurements indicate that the ZnO nanowires are polycrystalline and are composed of nanoparticles and nanopores. ZnCdO nanowires, which were seldom reported previously, have also been prepared in this way. Just like the ZnO nanowires, the ZnCdO nanowires also show the porous structure. Photoluminescence studies on both ZnO and ZnCdO nanowires show intense near-band edge emissions at room temperature. The transition from one kind of nanowires to another by simple thermal oxidization described in this paper may be applicable to some other compound semiconductors and may open a practical route to yield nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号