首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The disadvantages of NW-TN-LCD (normally white twisted nematic liquid crystal display) are discussed. The reason that the negative birefringent polyimide thin films are used to compensate NW-TN-LCD to decrease off-axis leakage, improve contrast ratios and enlarge viewing angles is explained. A certain polyimide thin film is taken as an example to show the compensation effect on NW-TN-LCD. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
《Liquid crystals》2000,27(10):1343-1356
In this paper, the synthesis, photo-reaction and photo-induced liquid crystal alignment of a polyimide with a pendant cinnamate group are reported. The polyimide was synthesized by the thermal imidization of the polyamic acid derived from 4,4'-(hexafluoro-isopropylidene)diphthalic anhydride and hydroxydiaminopropane, followed by the attachment of the cinnamate group to the main chain polyimide. The surface of thin layers of the polyimide was found to be preferentially occupied by the pendant cinnamate groups, and liquid crystal alignment on the polyimide thin film exposed to polarized UV was independent of the cinnamate content. The thermal stability of the photo-induced liquid crystal alignment was enhanced with decrease in the cinnamate content. This could be attributed to the strong interchain interaction of the polyimide chains which prevents thermal randomization of the photo-product of the pendant cinnamates. The dependences of the photo-reaction temperature and the annealing temperature of the alignment layer on the azimuthal anchoring energy of the photo-aligned liquid crystal suggest that the local stress developed during the UV irradiation profoundly influences the thermal stability of the liquid crystal alignment.  相似文献   

3.
In this paper, the synthesis, photo-reaction and photo-induced liquid crystal alignment of a polyimide with a pendant cinnamate group are reported. The polyimide was synthesized by the thermal imidization of the polyamic acid derived from 4,4'-(hexafluoro-isopropylidene)diphthalic anhydride and hydroxydiaminopropane, followed by the attachment of the cinnamate group to the main chain polyimide. The surface of thin layers of the polyimide was found to be preferentially occupied by the pendant cinnamate groups, and liquid crystal alignment on the polyimide thin film exposed to polarized UV was independent of the cinnamate content. The thermal stability of the photo-induced liquid crystal alignment was enhanced with decrease in the cinnamate content. This could be attributed to the strong interchain interaction of the polyimide chains which prevents thermal randomization of the photo-product of the pendant cinnamates. The dependences of the photo-reaction temperature and the annealing temperature of the alignment layer on the azimuthal anchoring energy of the photo-aligned liquid crystal suggest that the local stress developed during the UV irradiation profoundly influences the thermal stability of the liquid crystal alignment.  相似文献   

4.
In this work, the effects of fluorination of polyimide thin films on surface and dielectric characteristics were studied using X-ray photoelectron spectroscopy (XPS) and dielectric spectrometry, respectively. The thermal and mechanical properties of the film were characterized by thermogravimetric analysis (TGA) and tensile strengths, respectively. The fluorine content of the polyimide thin film was increased with increasing treatment concentration, resulting in decreasing dielectric constant of the film. It was found that the replacement of fluorine led to the decrease of the local electronic polarizability of polyimide, or to the increase of the free volume, which can be attributed to the relatively large size of fluorine. Nevertheless, the fluorination did not significantly affect thermal or mechanical properties of the polyimide film under mild conditions in this system.  相似文献   

5.
The water sorption behavior and the activation energy were investigated for various chemical structure polyimide thin films; BPDA‐PDA, BPDA‐ODA, PMDA‐ODA, and 6FDA‐ODA. The activation energy for the water diffusion varied in the range of 5.53 to 9.27kcal/mol, and was in the increasing order: BPDA‐PDA < BPDA‐ODA < PMDA‐ODA < 6FDA‐ODA. BPDA‐PDA and BPDA‐ODA polyimide films showed relatively well‐ordered morphological structure, which results in relatively low diffusion coefficient and high activation energy. It was found that the diffusion coefficient and the activation energy are significantly related to the in‐plane orientation, crystallinity, and packing order in the polyimide thin films. The morphological structure was predominant factors for the water diffusion coefficient and activation energy in the polyimide thin films. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2714–2720, 2000  相似文献   

6.
For polyimide thin films, the dielectric properties were investigated with the capacitance and optical methods. The dielectric constants of the 4,4′‐oxydianiline (ODA)‐based polyimide thin films varied from 2.49 to 3.10 and were in the following decreasing order: 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA)–ODA > 1,2,4,5‐benzenetetracarboxylic dianhydride (PMDA)–ODA > 4,4′‐hexafluoroisopropylidene diphthalic dianhydride (6FDA)–ODA. According to the absorption of water, the diffusion coefficients in the films varied from 4.8 × 10?10 to 7.2 × 10?10 cm2/s and were in the following increasing order: BPDA–ODA < PMDA–ODA < 6FDA–ODA. The dielectric constants and diffusion coefficients of the polyimides were affected by the morphological structures, including the molecular packing order. However, because of the water uptake, the changes in the dielectric constants in the polyimide thin films varied from 0.49 to 1.01 and were in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. Surprisingly, 6FDA–ODA with bulky hexafluoroisopropylidene groups showed less of a change in its dielectric constant than PMDA–ODA. The total water uptake for the polyimide thin films varied from 1.43 to 3.19 wt % and was in the following increasing order: BPDA–ODA < 6FDA–ODA < PMDA–ODA. This means that the changes in the dielectric constants in the polyimide thin films were significantly related to the morphological structure and hydrophobicity of hexafluoroisopropylidene groups. Therefore, the morphological structure and chemical affinity in the polyimide thin films were important factors in controlling the dielectric properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2190–2198, 2002  相似文献   

7.
通过溶胶-凝胶工艺, 采用两步加热法在聚酰亚胺表面制备了具有c轴取向的ZnO薄膜. 通过差式扫描量热-热重分析(DSC-TGA)得出最佳的前热处理温度和后热处理温度分别为300和390 ℃. 通过X射线衍射(XRD)和扫描电子显微镜(SEM)对薄膜的晶体取向和表面形貌进行了分析, 描述了ZnO薄膜在聚酰亚胺上的生长过程. 拉伸实验结果表明, ZnO薄膜与聚酰亚胺衬底有较强的附着力.  相似文献   

8.
The polymer surface relaxation in thin films has been a long debating issue.We report a new method on studying surface relaxation behaviors of polymer thin films on a solid substrate.This method involved utilizing a rubbed polyimide surface with a pretilting angle in a liquid crystalline cell.Due to the surface alignment,the liquid crystals were aligned along the rubbing direction.During heating the liquid crystalline cell,we continuously monitored the change of orientation of the liquid crystals.It is u...  相似文献   

9.
通过溶胶-凝胶法制备了含二阶非线性光学发色团分散红19(DR19)的硅氧烷染料与聚酰亚胺有机-无机杂化材料.利用红外光谱、紫外-可见光谱、SEM、DSC和TGA等手段对其进行了表征.杂化极化后的序参数高达0.48,并具有优良的极化取向稳定性,423K下处理300h后,序参数仍能保持初始值的90%.杂化薄膜有较好的表面平整性,其断面呈网络结构.杂化材料的玻璃化转变温度(Tg)为561K,比纯聚酰亚胺的Tg(543K)高18K,表现出优良的高温热稳定性,其5%热失重温度为691K,10%热失重温度为758K.  相似文献   

10.
Compared with the traditional thin film techniques, the matrix-assisted pulsed laser evaporation (MAPLE) technique has many advantages in the deposition of polymer and organic thin films. It has a wide range of applications in many fields, such as non-linear optics, luminescent devices, electronics, various sensors. We have successfully deposited polyimide thin films by using the MAPLE technique. These films were characterized with XPS. The XPS spectra showed that the single-photon effect is ob-vious at low laser fluence and the chemical bonds will be broken, resulting in decomposition of the films. Contrarily, the single-photon effect will decrease and the multi-photon effect and the photothermal effect will increase at high laser fluence, resulting in the protection of the structure of the polyimide thin films and the obvious decrease in decomposition. High laser fluence is more suitable for the deposition of polymer and organic thin films than low laser fluence.  相似文献   

11.
The molecular orientation of very thin films on solid substrates can be determined quantitatively by measuring the polarized infrared (IR) absorption spectra of samples as a function of angle of incidence. The quantitative molecular orientation is derived by fitting the incident angle dependence and the dichroic ratio with theoretical calculations. We applied this method to a technologically important system: liquid crystal (LC)/rubbed polyimide film. To understand the alignment mechanism of LC molecules in contact with rubbed polyimide films, we have quantitatively determined the molecular orientation of rubbed polyimide films and a surface LC layer in contact with a rubbed polyimide film. In this paper two relations are discussed: (1) correlation between the inclination angle of polyimide backbone structures in rubbed films and the pretilt angle of bulk LC in contact with them, and (2) relation among the molecular orientation of a rubbed polyimide film and those of surface and bulk LC layers in contact with it.  相似文献   

12.
In this study, the effects of fluorine treatment on surface properties, surface free energies, and dielectric constants of polyimide thin films were studied using X-ray photoelectron spectroscopy, contact angles, and dielectric characteristics, respectively. The glass transition temperature of fluorinated polyimide film gradually decreases with increasing fluorine pressure. The surface free energies and dielectric constants of the film decreased with increasing amount of the treatment fluorine gas. It was explained that the replacement of fluorine led to a decrease of the local electron polarization of polyimide and an increase of the free volume, which could be attributed to the relatively large volume of fluorine.  相似文献   

13.
Polyimide thin films were synthesized from 3,3′,4,4′‐biphenyltetracarboxylic acid dianhydride (BPDA) and four different diamines (p‐phenylene diamine, 4,4′‐oxydiphenylene diamine, 4,4′‐biphenylene diamine, and 4,4′‐sulfonyldiphenylene diamine). The nanoindentation behavior of the resulting polyimides, namely, poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA), poly(4,4′‐biphenylene biphenyltetracarboximide) (BPDA‐BZ), poly(4,4′‐oxydiphenylene biphenyltetracarboximide) (BPDA‐ODA), and poly(4,4′‐sulfonyldiphenylene biphenyltetracarboximide) (BPDA‐DDS), were investigated. Also, the morphological properties were characterized with a prism coupler and wide‐angle X‐ray diffraction and were correlated to the nanoindentation studies. The nanoindentation behavior and hardness varied quite significantly, depending on the changes in the chemical and morphological structures. The hardness of the polyimide thin films increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐BZ < BPDA‐PDA. For all the polyimide thin films, except that of BPDA‐BZ, the hardness decreased with an increase in the load. The birefringence, a measure of the molecular in‐plane orientation, increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐PDA < BPDA‐BZ. The X‐ray diffraction studies revealed that the crystallinity of the polyimide thin films varied with the changes in the chemical structure. The studies showed that the indentation response with an applied load and the hardness by nanoindentation for the BPDA‐based polyimides were closely related to the morphological structure. The nanoindentation and birefringence results revealed that the mechanical properties of the polyimide thin films were dependent on the crystallinity, which arose because of the chain order along the chain axis and the molecular packing order. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 861–870, 2004  相似文献   

14.
The interfacial interaction between the ZnO film and the polyimide substrate was investigated by XPS and density functional theory (DFT) calculation, for the ZnO thin films deposited on polyimide (PI) substrates using cathodic vacuum arc deposition technique. The XPS results showed that a shoulder peak was present for the ZnO film with the thickness of about 15 nm, used for depth profiling, at the binding energy 1 eV higher than that of the Zn2p3 core level for bulk ZnO. Such a shoulder peak is attributed to the interaction between the ZnO and the polyimide. This agrees with the results of DFT calculation. Furthermore, the difference in adsorption energy between the polyimide monomer and the ZnO molecule at different adsorption sites showed that the carbonyl (C?O) plays an important role in the interfacial strength. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Systematic and reproducible control over average interparticle spacing of Pt, Ni, and Cu nanoparticles embedded in polyimide thin layers was achieved. The metal-catalyzed decomposition of polyimide matrixes surrounding metal nanoparticles causes a decrease in the composite layer thickness, while maintaining the size of nanoparticles. This ability provides an effective methodology for the preparation of metal/polymer nanocomposites with tailored microstructures and holds great promise toward the fundamental understanding of the physical interactions among metal nanoparticles.  相似文献   

16.
In this study, the water permeability, the rejection property of sucrose and glucose, the fouling property of humic acid as the foulant for a novel porous fluorinated polyimide membrane made by combining the ion irradiation and plasma treatment have been reported. First, an asymmetric polyimide membrane with a defect‐free and thin skin layer was prepared, then ions on the skin layer were irradiated and the ion‐irradiated layer was treated by plasma to form nanopores in the layer. The asymmetric polyimide membranes with a defect‐free skin layer were irradiated with 50 keV He+ at 1 × 1015 ions/cm2, and the irradiated polyimide surfaces were treated by Ar glow discharge. The porous polyimide membrane showed a high water flux and excellent rejection properties and fouling resistance when compared with NTR‐7250, which is commercially available. These findings indicated that the pore size formed on the porous polyimide membrane was effectively controlled by the plasma treatment time and the skin layer thickness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A dense layer of amorphous carbon nanofibers was fabricated by pyrolyzing a thin film of polyimide using a monolayer of gold nanoparticles as a catalyst.  相似文献   

18.
Poly(p-phenylene pyromellitimide) (PMDA-PDA), poly(oxydiphenylene pyromellitimide) (PMDA-ODA), and poly(4,4′-oxydiphenylene p-phenylene pyromellitimide) random copolyimide thin films with different p-phenylene diamine (PDA) contents were prepared. Nanoindentation was used to characterize the mechanical properties (hardness and modulus), and a prism coupler was used for measuring the optical properties (refractive index and birefringence). The hardness and modulus were calculated from curves of the nanoindentation load versus the displacement. The effect of the PDA content on the hardness and modulus was studied. The hardness of the polyimide thin films varied from 0.248 to 0.613 GPa, and the modulus varied from 3.78 to 6.75 GPa at a load of 0.127 mN. The hardness and modulus increased with increasing PDA content, whereas the penetration depth and plastic deformation decreased. As the load increased, the penetration depth increased. The hardness of PMDA-ODA films remained constant, whereas that of PMDA-PDA and PMDA-ODA/PDA films decreased with increasing load. The in-plane refractive index varied from 1.7219 to 1.8244, and the out-of-plane refractive index varied from 1.6390 to 1.5827, as a function of the PDA content. The birefringence varied with the PDA content from 0.0829 to 0.2417. The morphological structure of the prepared polyimide thin films was investigated with wide-angle X-ray diffraction. The mechanical properties and optical properties of the polyimide thin films were strongly dependent on the changes in the morphological structure, which originated from the variation of the composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2202–2214, 2004  相似文献   

19.
以 4 ,4′ 二 (1,2 苯二酸酐 4 羧酸酯 )偶氮苯为二酐单体 ,4 十六烷氧基 4′ ,4″ 二氨基三苯甲烷为二胺单体 ,通过缩聚反应合成了可溶性偶氮聚酰亚胺 .采用红外光谱、氢核磁共振、紫外光谱和热分析等手段 ,对产物的结构、热性能及光学性能等进行了表征 .在紫外光辐照下 ,上述聚合物表现出明显的光色效应 .经线性偏振紫外光 (LPUV)辐射后的上述偶氮聚酰亚胺定向层能诱导液晶盒中液晶分子发生定向沿面排列 ,且取向均匀 .上述实验表明 ,合成的偶氮聚酰亚胺是一类潜在的液晶光定向材料 .  相似文献   

20.
The growth of aluminum nitride thin films onto various substrates (glass, flexible polyimide, or silicon) and onto different buffer layers (Au, Nb, Cu, Ag, Co, Fe, NiFe, or IrMn) is reported. Samples grown on IrMn, Co, NiFe, Nb, or Au show smooth surfaces. This same smooth quality is observed in samples grown at a lower 200 °C temperature directly on glass, Si, or flexible polyimide. In applications where thin and smooth piezoelectric films are necessary, c‐axis‐oriented AlN can be grown onto a wide range of different surfaces: conducting, insulating, ferromagnetic, antiferromagnetic, or flexible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号