首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binary blends using metallocene ethylene‐1‐octene copolymer as matrix were prepared and subjected to electron beam (EB) irradiation (50, 100, and 200 kGy). Gel content and melt flow index values indicated that the blends were crosslinking. Fourier transform infrared‐ATR spectroscopy was used to study the crosslinking and oxidative degradation of the blends via tertiary carbon and carboxyl group formation, respectively. Thermal and mechanical properties were studied showing that the crystallinity of both matrix and dispersed phase decreased with irradiation dose, and that the thermoplastic elastomers with good mechanical properties may be obtained by EB irradiation. Chain branching and scission were also detected at all irradiation doses, although at the highest doses (200 kGy) a crosslinking reaction was the most predominantly observed effect. The successive self‐nucleation annealing technique was used to determine the EB irradiation effects on crystallization of some blends in which crosslinking and chain branching take place, modifying the chain's structure and therefore crystalline regions in the matrix and the dispersed phase. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2432–2440, 2007  相似文献   

2.
It is well known that polypropylene undergoes simultaneous crosslinking and degradation under irradiation. However, there are speculations regarding the formation of branching under special conditions. It is also well known that the melt-strength property of a polymer increases with molecular weight and with long-chain branching due to the increase in the entanglement level. This study was a contribution to the understanding of the following points: the role of molecular weight, the role of structural modifications on nucleation properties; the structural changes on polypropylene.

The results showed that degradation was the major reaction in the initial step of irradiation, however, the largely modified molecules concentrated in the high molecular weight fraction. The results also confirm that the branching formation is likely to occur.  相似文献   


3.
A new simulation model for network formation in free-radical copolymerization of vinyl and divinyl monomers is proposed. This model is based on the crosslinking density distribution of the primary polymer molecules that results from a kinetically controlled network formation. The crosslinking density distribution provides information on how each chain is connected to other chains and therefore, a detailed analysis of the kinetics of network formation becomes possible by application of Monte Carlo simulations. In this method, not only averages but also various distributions, such as molecular weight distribution and distribution of crosslinked units as well as of unreacted pendant double bonds among various polymer molecules, can be calculated. The present theory is a direct solution for the Bethe lattice formed under nonequilibrium conditions, and therefore, it can be used to examine the applicability of the earlier theories of network formation to kinetically controlled systems. The present method is quite general and can be applied to various complex reactions systems that involve crosslinking, branching, cryclization and degradation in a nonequilibrium system.  相似文献   

4.
An investigation on the time-dependent chemical degradation of ethylene-propylene diene rubber containing 5-ethylidene-2-norbornene as diene cured by peroxide crosslinking in the presence of a coagent in an acidic environment (20% Cr/H2SO4) has been made. Two types of rubber, with comparable monomer composition, but having significant differences in molar mass and levels of long chain branching were tested. Dicumyl peroxide and triallylcyanurate under similar conditions were used for curing the rubbers. The molecular mechanisms of chemical degradation at the surface were studied using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, which demonstrate that several oxygenated species evolve during exposure. The primary process of degradation is hydrolytic attack on the crosslink sites, which is manifested by a decrease in crosslink density. The surface degradation is found to be strong enough to alter the bulk mechanical properties as observed by the change in retention in tensile strength, elongation at break, modulus at 50% elongation and, the change in micro-hardness. Retention in modulus at 50% elongation is found to follow a negative linear correlation with decrease in crosslink density. With higher molar mass and level of long chain branching more crosslinking occurs and thus comparatively more hydrolytic attack ensues. Scanning electron microscopy shows that the surface topography is significantly altered upon exposure and supports the notion of the dependence of degradation on the crosslinking density of the samples. Importantly, the coagent used in this study is shown to enhance the chemical degradation through formation of weaker sites for hydrolysis. The results also show that upon prolonged exposure the resulting oxygenated species tend to combine with each other.  相似文献   

5.
A comprehensive mathematical model for free-radical copolymerization reactions has been developed for a homogeneous continuous stirred tank reactor. The present model is based on a fairly general copolymerization scheme accounting for the formation of linear and branched copolymer chains. Both chain transfer to polymer and terminal double bond reactions are considered in order to predict the long chain branching frequency. Changes in molecular weight, composition and degree of branching occurring during the copolymerization reaction are modelled using the method of moments. To break-down the dependence of the moment equations on higher order moments two different closure methods are considered. The predictive capabilities of the model are examined in relation to the solution copolymerization of methyl methacrylate with vinyl acetate. It is shown that both chain transfer to polymer and terminal double bond reactions significantly contribute to the broadening of the molecular weight and degree of branching distributions. Furthermore, the terminal double bond reaction effects significantly the copolymer number-average molecular weight and the concentration of terminal double bonds.  相似文献   

6.
Synthesis of poly(acrylic acid) nanogels by preparative pulse radiolysis   总被引:2,自引:0,他引:2  
Nanogels are sub-micron size, water-swellable crosslinked structures of hydrophilic polymers. In this work a radiation-based synthesis method that has been previously tested for neutral polymers is applied for production of nanogels of a synthetic polyelectrolyte—poly(acrylic acid) (PAA). In this technique dilute, deoxygenated PAA solution (pH 2) circulating in a closed loop is subjected to pulse irradiation with fast electrons. In each pulse many tens of radicals are instantaneously formed on every macromolecule. One of the major reaction paths of these radicals is intramolecular recombination leading to the formation of nanogels. It is demonstrated that radiation-induced reactions in our system show a typical feature of intramolecular crosslinking, i.e. a strong decrease in dimensions of a polymer coil without an accompanying decrease in molecular weight. In accordance with expectations based on earlier observations on non-polar polymers, intramolecular recombination of PAA-derived radicals proceeds according to non-classical kinetics. A model of non-homogeneous kinetics with time-dependent rate constant has been applied to describe this behaviour and the relationship between kinetic parameters and initial average number of radicals per chain is briefly discussed. The weight-average molecular weight of the products is influenced by side reactions, mainly degradation (chain breakage) and intermolecular crosslinking.  相似文献   

7.
Bashir S  Mutter R  Derrick PJ 《The Analyst》2003,128(12):1452-1457
Dihydroxybenzoic acid was modified to three analogues (M2, M4 and M6). The analogues exhibited specific properties that resulted in enhancement of analyte signal intensity with or without addition of iodine compared to the underivatized parent. Addition of iodine to M2, an ester of dihydroxybenzoic acid that had a terminal double bond in the alkyl chain, resulted in peak intensities comparable to the parent, indicating that iodine interaction across the double bond resulted in enhancement although the exact mechanism is not fully understood. No enhancement on addition of iodine was observed for M4, which had a long alkyl chain that contained no double bonds. The alkyl chain allowed micelle formation in solution, which in turn allowed more uniform analyte-to-matrix mixing. The final analogue combined the long alkyl chain of M4 with the double bond of M2 and exhibited either similar peak intensities to that of dihydroxybenzoic acid or better. Micelle formation in solution was examined using spectroscopy and in the solid by reflective microscopy. The standard deviation from spot to spot was considerably lower relative to dihydroxybenzoic acid (RSD 3.4%vs. 14.2%). Unlike dihydroxybenzoic acid, the novel matrix M6 was able to yield characteristic peaks for analytes such as ubiquitin.  相似文献   

8.
本文研究了用不同催化体系制备的聚丁二烯和加氢的聚丁二烯的~(13)C-NMR谱图。结合GPC测定支化度的数据,提出了二种可能的支化结构。以Ni及Co催化体系聚合的试样,支化点可能位于顺-1,4主链双键的α-次甲基上;而由Ni+Mo催化体系聚合的试样,可能为1,2-乙烯基的双键打开接长支链。  相似文献   

9.
Effects of electron beam (EB) irradiation on poly(butylene adipate)diol (PBAD) were studied by means of GPC, DSC, and X-ray diffractometry. Below 5 Mrad, chain scission predominantly occurs, while above 10 Mrad, crosslinking and chain scission take place in parallel. Structure of EB-irradiated PBAD is mainly characterized by the main reactions, degradation and crosslinking. Crystallinity of PBAD increased by EB irradiation. This phenomenon was explained by reorganization due to high molecular mobility of EB-irradiated PBAD. But, increment of crystallinity decreased with increasing dose because of formation of crosslinking, excessive degradation and thermal effect of EB. As the result, the crystallinity of EB-irradiated PBAD with a high dose becomes lower than that of original PBAD by thermal treatment.  相似文献   

10.
In the present paper the gel formation of polyamide 610 by γ-ray irradiation in the presence of polyfunctional monomer and γ-crystal nucleating agent under vacuum or air atmosphere had been studied. It was found that the gel formation was dependent on the content of polyfunctional monomer and nucleating agent. However, there was very little difference between gel contents irradiated under vacuum and air atmosphere. The results showed that the crosslinking by γ-irradiation enhanced the mechanical properties of PA610 especially at high temperature in the presence of polyfunctional monomer and γ-crystal nucleating agent. The mechanism of radiation crosslinking and scission was discussed according to the composition and quantity of gas released from three kinds of PA during irradiation.  相似文献   

11.
An improved kinetic model for the radical polymerization of N‐vinyl‐pyrrolidone (NVP) in aqueous medium is developed. Quantum chemical simulations reveal that the transfer to polymer is of minor importance whereas the transfer to monomer by hydrogen abstraction in 3‐position of the pyrrolidone ring leads to a radical with a double bond which initiates a new chain bearing a terminal double bond (TDB). The resulting dead chains with one, two, or more TDB are the main source for a strong increase of molar mass in batch reactors at high conversion due to long chain branching and crosslinking. This can be a source for gel formation and fouling in continuous reactors.  相似文献   

12.
The radiation chemistry of PCTFE at different temperatures has been studied. The polymer was irradiated under vacuum to absorbed doses of up to 1500 kGy. Three irradiation temperatures were chosen. These included ambient temperature, a temperature well above the Tg and a temperature above the crystalline melting temperature. These were 298, 423 and 493 K, respectively. The formation of new structures was identified by solid-state FTIR and 19F NMR. No branching was observed below the melting temperature, but branches were observed above the melting temperature. G-values for chain-end formation were 1.5 and 2.4 at room temperature and 423 K, respectively and the G-value for the formation of double bonds was found to be <0.1. For the irradiations at 493 K, the G-values for the formation of chain ends, double bonds and branching points were 3.6, 0.2 and 0.5, respectively. The presence of long-chain branches within the polymer structure could not be proven for radiolysis at 493 K, but scission predominates and network formation does not occur upon irradiation. DSC studies of the polymers irradiated at ambient temperature were consistent with chain scission leading to an increase in the percentage crystallinity, as observed for other fluoropolymers.  相似文献   

13.
The effect of irradiating amorphous poly (ether ether ketone), PEEK, with ions, 11 MeV proton (H+), and 25.6 MeV helium (He2+), has been investigated focusing on the changes in thermal properties. The extent of chain scission and crosslinking was evaluated using the Charlesby‐Pinner equation. Crosslinking increased the glass transition temperature (Tg) in line with the DiBenedetto equation from which the crosslinking constant for each ion was calculated. The effect of irradiation on the thermal degradation kinetics was studied in an argon atmosphere at a constant heating rate by mean of the Chang and the second Kissinger methods. Irradiation significantly reduced the thermal stability of the polymer and its service lifetime. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2212–2221, 2008  相似文献   

14.
15.
Copolymers bearing pendant O-acyloxime groups were synthesized by two methods: copolymerizations of oxime acrylate (methyl β-naphthyl ketone oxime acrylate or benzophenone oxime acrylate) and styrene, condensation of acrylic acid—styrene copolymer with oximes (benzophenone oxime, p-nitrobenzophenone oxime, methyl β-naphthyl ketone oxime, benzalacetone oxime or 9-fluorenone oxime). The photochemical behavior of the O-acyloxime copolymers changed markedly with the irradiation conditions: irradiation of benzene solutions led to degradation in air and crosslinking under nitrogen, while irradiation of solid films in air resulted in simultaneous degradation and crosslinking. Photolysis of methyl β-naphthyl ketone oxime acetate, a model for the O-acyloxime copolymer, in benzene solution under nitrogen resulted in scission of the N? O bond. The same reaction was observed in the irradiation of the O-acyloxime copolymers. It is suggested that formation of free radicals on the polymer chains via scission of the N? O bond is followed by decarboxylation. In the absence of oxygen, crosslinking of the polymer by recombination of the free radicals competes with degradation via β-scission. In the presence of oxygen, autoxidative degradation predominates.  相似文献   

16.
In order to get information on the radiolytic changes in 1,2-polybutadiene (1,2-PB) the sol and gel fractions, the conversion of double bonds, the structure and concentration of radicals, the formation of dienes and the formation of gaseous products were measured. In addition, the dose rate dependence and temperature dependence for the conversion of double bonds were determined. G values for double bond conversion depend on molecular weight and range from 20 to 200. G values for crosslinking are about 10. A mechanism for the double bond conversion is proposed which involves initiation by a transformation of the primary radical ion in the vinyl group into a carbonium ion and a radical. This is supported by ESR measurement. Reaction of the carbonium ion with a vinyl group in the same chain gives rise to cyclization, whereas reaction with a vinyl group in a neighboring chain results in crosslinking. A comparison of the G values for conversion of double bonds with the G values for crosslinking shows that the formation of cyclic rings exceeds the formation of crosslinks by a factor of about 10. The corresponding values in 1,4-cis- and 1,4-trans-polybutadiene are much smaller [G(cl) ? 2; G(db) ? 7]. The pendent vinyl groups in 1,2-polybutadiene therefore are more reactive than the vinylidene groups in 1,4-polybutadienes.  相似文献   

17.
The effect of electron-beam irradiation on the surface properties and the parameters of the semicrystalline structure of biaxially oriented poly(ethylene terephthalate) (PET) films was studied. It was shown that the crystallinity and the surface tension of the irradiated films at the interfaces with isooctane and water vary in a nonmonotonic manner over the dose range D= 25–300 kGy. As the absorbed dose increases, the dispersion and polar terms of surface energy increase, exhibiting an extremum as a result of the competing chain crystallization and amorphous-phase formation processes, as well as oxidative degradation and crosslinking of PET samples.  相似文献   

18.
Structural changes in poly(vinylidene fluoride)-trifluoroethylene [P(VDF-TrFE)] copolymers caused by X-ray irradiation were investigated by molecular weight determination, EPR analysis, FTIR spectroscopy, gel content, DSC thermal analysis, X-ray diffraction, and piezoelectricity measurements. Samples exhibit radiation-induced conductivity (RIC) due to the formation of radical ions. These radicals are generated by bond cleavage, which could react, leading to structural changes such as oxidation, double bond formation, chain scission, and crosslinking. The increasing gel content with radiation dose indicated that crosslinkings of the polymer chains predominate. Irradiation on P(VDF-TrFE) caused the melting temperature, heat of fusion, and Curie temperature to decrease. These results are consistent with the partial destruction of crystalline domains. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1201–1205, 1997  相似文献   

19.
The kinetic parameters for the thermal degradation of high impact polystyrene (HIPS) in presence of some metal oxides exhibit reaction rate compensation effect. In thermal degradation of HIPS in presence of transition metal oxides different active centers act simultaneously as reaction sites and macroradicals are formed through random chain scission, disproportion or cyclization. Some oxides retard the polymer degradation through crosslinking and cyclization by the interaction of macroradicals with the double bond in butadiene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The time-dependent chemical degradation of accelerated sulphur cured ethylene propylene diene rubber containing 5-ethylidene-2-norbornene as diene in an acidic environment (20% Cr/H2SO4) was investigated. Two different rubbers with a similar ethylene to propylene ratio and diene content but with a significant difference in molar mass and level of long chain branching were used in the study. The molecular mechanisms of the chemical degradation occurring at the surface were determined using surface analysis (X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy). The results reveal formation of several oxygenated species on the surface as a consequence of the acid attack. Furthermore, the crosslink sites of the exposed rubber samples are also found vulnerable to hydrolytic attack as evidenced by the decrease in crosslink density. The extent of surface degradation was strong enough to affect the bulk mechanical properties. Changes in mechanical properties were also monitored through determining retention in tensile strength, (%) elongation at break, modulus at 50% elongation, and change in micro-hardness. A negative correlation is also established between retention in modulus at 50% elongation and decrease in crosslink density. Scanning electron microscopy reveals the topographical damage at the surface due to the aqueous acid induced chemical degradation. The results indicate that the chemical degradation proceeds mainly via hydrolysis of crosslinks but upon prolonged exposure, the oxygenated species tend to combine with each other. The effect of molar mass and level of long chain branching also influences the chemical degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号