首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
引导混沌运动到周期运动的自适应控制策略   总被引:4,自引:0,他引:4  
胡海岩 《力学学报》1997,29(5):631-635
提出一种自适应控制策略,对控制参数作线性反馈将非线性动力系统由混沌运动引导到指定的周期运动.所解决的关键问题是将反馈控制强度的确定转化为扩维相空间中的极点配置问题.给出了将该策略用于控制Logistic映射和受迫Dufing振子的仿真.  相似文献   

2.
Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes van der Pol damping, is very complex. In this paper, Melnikov'smethod is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system for various resonant cases.Finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena.  相似文献   

3.
A fractional-order (FO) nonlinear model is used to describe an electromechanical system. We make capital out of the fact that for realistic modeling, the electric characteristics of a capacitor include a fractional-order time derivative. The dynamics and synchronization of coupled fractional-order nonlinear electromechanical systems are analyzed. Detailed attention is granted to the bifurcations that can occur in the dynamics of a single uncoupled electromechanical system as the fractional-order varies. For example, the fractional-order counterparts of the chaotic 4-order system are periodic at orders less than 3.985. The effect of the fractional-order on the condition of occurrence of synchronization phenomena in the network of many mutually coupled fractional-order nonlinear electromechanical systems is analyzed, especially when they are chaotic. An insight on the overall dynamics of the network is provided. It is shown that the dynamics of both the uncoupled system and the network are very sensitive to changes in the order of the fractional derivative.  相似文献   

4.
The effect of a delay feedback control (DFC), realized by displacement in the Duffing oscillator, for parameters which generate strange chaotic Ueda attractor is investigated in this paper. First, the classical Duffing system without time delay is analysed to find stable and especially unstable periodic orbits which can be stabilized by means of displacement delay feedback. The periodic orbits are found with help of the continuation method using the AUTO97 software. Next, the DFC is introduced with a time delay and a feedback gain parameters. The proper time delay and feedback gain are found in order to destroy the chaotic attractor and to stabilize the periodic orbit. Finally, chatter generated by time delay component is suppressed with help of an external excitation.  相似文献   

5.
基于最优参数控制方法,实现了齿轮传动系统中的混沌控制.以经典的间隙单齿轮副非线性动力学模型为研究对象,以啮合静载荷为控制参数,通过混沌吸引子中轨线的观测近似得到目标周期不动点、系统在目标不动点处的雅克比矩阵以及在控制原始参量处的梯度矩阵.最后运用最优参数控制策略计算得到啮合静载荷的小扰动量,实现了把齿轮系统的混沌运动镇定周期一轨道上的目的.研究结果表明,基于最优参数控制方法的控制过程,只是在控制的前几个周期内需要控制参数产生相对较大的扰动量,随着控制的继续进行,扰动量几乎稳定到了某一固定值,不再需要较大的变动.而且控制参数计算所需要的中间参量可以直接由混沌吸引子中轨线的观测近似得到,因而控制容易实现.  相似文献   

6.
U. H. Hegazy 《Meccanica》2009,44(4):355-368
This paper is concerned with the nonlinear dynamics and vibration control of an electromechanical seismograph system with time-varying stiffness. The instrument consists of an electrical part coupled to mechanical one and is used to record the vibration during earthquakes. An active control method is applied to the system based on cubic velocity feedback. The electromechanical system is subjected to parametric and external excitations and modeled by a coupled nonlinear ordinary differential equations. The method of multiple scales is used to obtain approximate solutions and investigate the response of the system. The results of perturbation solution have been verified through numerical simulations, where different effects of the system parameters have been reported.  相似文献   

7.
非自治时滞反馈控制系统的周期解分岔和混沌   总被引:9,自引:0,他引:9  
徐鉴  陆启韶 《力学学报》2003,35(4):443-451
研究时滞反馈控制对具有周期外激励非线性系统复杂性的影响机理,研究对应的线性平衡态失稳的临界边界,将时滞非线性控制方程化为泛函微分方程,给出由Hopf分岔产生的周期解的解析形式.通过分析周期解的稳定性得到周期解的失稳区域,使用数值分析观察到时滞在该区域可以导致系统出现倍周期运动、锁相运动、概周期运动和混沌运动以及两条通向混沌的道路:倍周期分岔和环面破裂.其结果表明,时滞在控制系统中可以作为控制和产生系统的复杂运动的控制“开关”.  相似文献   

8.
In this effort, a six-degree-of-freedom (DOF) model is presented for the study of a machine-tool spindle-bearing system. The dynamics of machine-tool spindle system supported by ball bearings can be described by a set of second order nonlinear differential equations with piecewise stiffness and damping due to the bearing clearance. To investigate the effect of bearing clearance, bifurcations and routes to chaos of this nonsmooth system, numerical simulation is carried out. Numerical results show when the inner race touches the bearing ball with a low speed, grazing bifurcation occurs. The solutions of this system evolve from quasi-periodic to chaotic orbit, from period doubled orbit to periodic orbit, and from periodic orbit to quasi-periodic orbit through grazing bifurcations. In addition, the tori doubling process to chaos which usually occurs in the impact system is also observed in this spindle-bearing system.  相似文献   

9.
This paper sheds new insights into the stability transformation method (STM) for chaos control of dynamical system. The STM is applied to stabilize both multiple equilibrium points and unstable periodic orbits (UPOs) embedded in the chaotic attractor of a new 3D autonomous system. Firstly, the different equilibrium points of chaotic system are stabilized with STM by choosing specific initial points and involutory matrices. Then, the stability matrix is derived based on a priori information of equilibrium points, which indicates that the non-involutory matrix can also be used to control the unstable equilibrium points of chaotic systems. Finally, it is found that the STM can be regarded as a special form of speed feedback control method (SFCM), which facilitates the practical implementation of STM scheme. The chaotic system can be controlled by adopting the corresponding feedback control strategy once the stability matrices are determined. In this way, the blindness of choice for control strategy in the SFCM is avoided, and the difficulty for determining the state variables to be controlled is overcome.  相似文献   

10.
In this paper, a three-dimensional autonomous nonlinear system called the T system which has potential application in secure communications is considered. Regarding the delay as parameter, we investigate the effect of delay on the dynamics of T system with delayed feedback. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, by using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a periodic orbit.  相似文献   

11.
This paper employs differential transformation (DT) method to analyze and control the dynamic behavior of a gyroscope system. The analytical results reveal a complex dynamic behavior comprising periodic, subharmonic, quasiperiodic, and chaotic responses of the center of gravity. Furthermore, the results reveal the changes which take place in the dynamic behavior of the gyroscope system as the external force is increased. The current analytical results by DT method are found to be in good agreement with those of Runge?CKutta (RK) method. In order to suppress the chaotic behavior in gyroscope system, the sliding mode controller (SMC) is used and guaranteed the stability of the system from chaotic motion to periodic motion. Numerical simulations are shown to verify the results. The proposed DT method and controlling scheme provide an effective means of gaining insights into the nonlinear dynamics and controlling of gyroscope systems.  相似文献   

12.
This paper presents the study on the chaotic wave and chaotic dynamics of the nonlinear wave equations for a simply supported truss core sandwich plate combined with the transverse and in-plane excitations. Based on the governing equation of motion for the simply supported sandwich plate with truss core, the reductive perturbation method is used to simplify the partial differential equation. According to the exact solution of the unperturbed equation, two different kinds of the topological structures are derived, which one structure is the resonant torus and another structure is the heteroclinic orbit. The characteristic of the singular points in the neighborhood of the resonant torus for the nonlinear wave equation is investigated. It is found that there exists the homoclinic orbit on the unperturbed slow manifold. The saddle-focus type of the singular point appears when the homoclinic orbit is broken under the perturbation. Additionally, the saddle-focus type of the singular point occurs when the resonant torus on the fast manifold is broken under the perturbation. It is known that the dynamic characteristics are well consistent on the fast and slow manifolds under the condition of the perturbation. The Melnikov method, which is called the first measure, is applied to study the persistence of the heteroclinic orbit in the perturbed equation. The geometric analysis, which is named the second measure, is used to guarantee that the heteroclinic orbit on the fast manifold comes back to the stable manifold of the saddle on the slow manifold under the perturbation. The theoretical analysis suggests that there is the chaos for the Smale horseshoe sense in the truss core sandwich plate. Numerical simulations are performed to further verify the existence of the chaotic wave and chaotic motions in the nonlinear wave equation. The damping coefficient is considered as the controlling parameter to study the effect on the propagation property of the nonlinear wave in the sandwich plate with truss core. The numerical results confirm the validity of the theoretical study.  相似文献   

13.
非线性转子-轴承系统的周期解及近似解析表达式   总被引:2,自引:0,他引:2  
通过对普通打靶方法进行改造提出一种确定非线性系统周期轨道及周期的新型打靶算法。首先通过改变系统的时间尺度,将非线性系统周期轨道的周期显式地出现在非线性系统的系统方程中,然后对传统打靶法进行改造,将周期也作为一个参数一起参与打靶法的迭代过程,迭代过程包含对周期轨道和周期的求解,迭代过程中的增量通过优化方法选择,从而能迅速确定出系统的周期轨道及其周期。应用所求的结果结合谐波平衡方法求得了非线性系统的周期轨道的近似解析表达式,理论上通过增加谐波的阶数任何精度的周期解都可以得到。最后将该方法应用于非线性转子轴承系统,求出了在某些参数下转子的周期解及其近似解析表达式,通过与四阶Runge-Kutta数值积分结果比较,验证了方法的有效性,计算结果对于转子系统运动的定量控制有重要理论指导意义。  相似文献   

14.
The dynamics of differential system can be changed very obviously after inputting impulse signals. Previous studies show that the single chaotic system can be controlled to periodic motions using impulsive control method. It was well known that the dynamics of hyper-chaotic and coupled systems are very important and more complex than those of a single system. In this paper, particular impulsive control of the hyper-chaotic Lü system was proposed, which is with outer impulsive signals. It can be seen that such impulsive strategy can generate chaos from periodic orbit or control chaos to periodic orbit etc. For the first time, impulsive control induced effects on dynamics of coupled systems are considered in this paper, where the impulse effect has outer input signals. Many interesting and useful results are obtained. The coupled system can realize synchronization and its synchronization manifold can be changed with such impulsive control signals. Strict theories are given, and numerical simulations confirm the correctness of theoretical results.  相似文献   

15.
The electromechanical gyrostat is a fourth-order nonautonomous system that exhibits very rich behavior such as chaos. In recent years, synchronization of nonautonomous chaotic systems has found many useful applications in nonlinear science and engineering fields. On the other hand, it is well known that the finite-time control techniques demonstrate good robustness and disturbance rejection properties. This paper studies the potential application of the finite-time control techniques for synchronization of nonautonomous chaotic electromechanical gyrostat systems in finite time. It is assumed that all the parameters of both drive and response systems are unknown parameters in advance. Moreover, the effects of dead-zone nonlinearities in the control inputs are also taken into account. Some adaptive controllers are introduced to synchronize two gyrostat systems in different scenarios within a given finite-time. Two illustrative examples are presented to demonstrate the efficiency and robustness of the proposed finite-time synchronization strategy.  相似文献   

16.
求解非线性动力系统周期解推广的打靶法   总被引:4,自引:1,他引:4  
提出一种确定非线性系统周期轨道及周期的改进打靶算法。首先通过改变系统的时间尺度,将非线性系统周期轨道的周期显式地出现在非线性系统的系统方程中,然后对传统打靶法进行改造,将周期也作为一个参数一起参入打靶法的迭代过程,从而能迅速确定出系统的周期轨道及其周期。该方法对初始迭代参数没有苛刻要求,可以用于分析强非线性系统,而且对参数激励系统同样有效,对高维系统也能迅速、准确地求得周期解。文中应用该方法对三维Rǒssler系统和八维非线性柔性转子-轴承系统的周期轨道和周期进行了求解,通过与四阶Runge-Kutta数值积分结果比较,验证了方法的有效性。  相似文献   

17.
基于压缩映射的混沌控制方法——CM方法被应用到小的离散神经网络,通过一个外部输入的小干扰,稳定混沌轨道嵌入在混沌吸引子内的某一不稳周期轨上。利用闭回路对技术估计欲稳定周期轨的近似位置。给出二维和三维神经网络的典型例子,通过数值模拟显示CM方法控制离散神经网络混沌行为的简单和有效性。  相似文献   

18.
This paper presents a polynomial chaos-based framework for designing optimal linear feedback control laws for nonlinear systems with stochastic parametric uncertainty. The spectral decomposition of the original stochastic dynamical model in an orthogonal polynomial basis, prescribed by the Wiener–Askey scheme, provides a deterministic model from which the optimal linear control law is designed. Optimality of the proposed control law is proved by solving the Hamilton–Jacobi–Bellman equation, and asymptotic stability of the controlled nonlinear systems is guaranteed in the Lyapunov sense. We are especially interested in synchronization of chaotic systems. For this reason, the control strategy is applied in the trajectory tracking of periodic orbits for the Duffing oscillator and the Rössler system with uncertain stochastic parameters and initial conditions. The results are verified with Monte Carlo simulations.  相似文献   

19.
Controllingchaoshasdrawnincreasingattentionbecauseofitstheoreticalimportanceandpossibleapplications,andmuchprogresshasbeenachieved[1~4].Theexactlinearizationisanimportantapproachtoanalyzeanddesignnonlinearcontrolsystems,andhasbeenemployedtocontrolcha…  相似文献   

20.
Delayed feedback control, proposed by Pyragas,is one of useful control methods of stabilizing unstable periodic orbits of chaotic systems without their exact information. This paper discusses an improved periodic delayed feedback control for the stabilization of the discrete-time chaotic systems. A technique to solve the generalized Sylvester matrix equation, based on polynomial matrix right coprime factorization, is introduced in order to give an explicit solution to the periodic gains of the closed-loop system. Moreover, some examples are demonstrated to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号