首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L−1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L−1 and 650 μg·L−1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.  相似文献   

2.
(1) Background: Solid phase microextraction (SPME)-Arrow is a new extraction technology recently employed in the analysis of volatiles in food materials. Grape volatile organic compounds (VOC) have a crucial role in the winemaking industry due to their sensory characteristics of wine.; (2) Methods: Box–Behnken experimental design and response surface methodology were used to optimise SPME-Arrow conditions (extraction temperature, incubation time, exposure time, desorption time). Analyzed VOCs were free VOCs directly from grape skins and bound VOCs released from grape skins by acid hydrolysis.; (3) Results: The most significant factors were extraction temperature and exposure time for both free and bound VOCs. For both factors, an increase in their values positively affected the extraction efficiency for almost all classes of VOCs. For free VOCs, the optimum extraction conditions are: extraction temperature 60 °C, incubation time 20 min, exposure time 49 min, and desorption time 7 min, while for the bound VOCs are: extraction temperature 60 °C, incubation time 20 min, exposure time 60 min, desorption time 7 min.; (4) Conclusions: Application of the optimized method provides a powerful tool in the analysis of major classes of volatile organic compounds from grape skins, which can be applied to a large number of samples.  相似文献   

3.
Ultrasound-assisted extraction (UAE) was used to extract carotenoids from the carrot pomace. To investigate the effect of independent variables on the UAE, the response surface methodology (RSM) with central-composite design (CCD) was employed. The study was conducted with three independent variables including extraction time (min), temperature (°C), and ethanol concentration (%). The results showed that the optimal conditions for UAE were achieved with an extraction time of 17 min, temperature of 32 °C, and ethanol concentration of 51% of total carotenoids (31.82 ± 0.55); extraction time of 16 min, temperature of 29 °C, and ethanol concentration of 59% for a combination of β-carotene (14.89 ± 0.40), lutein (5.77 ± 0.19), and lycopene (2.65 ± 0.12). The non-significant (p > 0.05) correlation under optimal extraction conditions between predicted and experimental values suggested that UAE is the more productive process than conventional techniques for the extraction of carotenoids from the carrot pomace.  相似文献   

4.
Determination of aniline in wastewater was investigated by microwave-assisted headspace solid-phase microextraction (MA-HS-SPME), for one-step in-situ sample preparation, and gas chromatography. Aniline in the water was evaporated into the headspace under the action of microwave irradiation and adsorbed directly by the SPME fiber. After desorption in the GC injection port and gas chromatography aniline was detected by FID. Conditions affecting the extraction efficiency, for example the pH of the water, addition of salt, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that adjustment of the pH of the water sample to 12 and headspace SPME sampling with a PDMS-DVB fiber under medium–high power irradiation (345 W) for 3 min resulted in the best extraction efficiency. Desorption of aniline was optimum when the SPME fiber was heated at 230 °C for 3 min. The detection limit was approximately 0.01 g mL–1. The proposed method is a simple, fast, and organic-solvent-free procedure for analysis of aniline in water. Application was illustrated by analysis of aniline in wastewater from a polymer factory.  相似文献   

5.
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.  相似文献   

6.
Ming-Chi Wei 《Talanta》2007,72(4):1269-1274
The novel pretreatment technique, microwave-assisted heating coupled to headspace solid-phase microextraction (MA-HS-SPME) has been studied for one-step in situ sample preparation for polycyclic aromatic hydrocarbons (PAHs) in aqueous samples before gas chromatography/flame ionization detection (GC/FID). The PAHs evaporated into headspace with the water by microwave irradiation, and absorbed directly on a SPME fiber in the headspace. After being desorbed from the SPME fiber in the GC injection port, PAHs were analyzed by GC/FID. Parameters affecting extraction efficiency, such as SPME fiber coating, adsorption temperature, microwave power and irradiation time, and desorption conditions were investigated.Experimental results indicated that extraction of 20 mL aqueous sample containing PAHs at optional pH, by microwave irradiation with effective power 145 W for 30 min (the same as the extraction time), and collection with a 65 μm PDMS/DVB fiber at 20 °C circular cooling water to control sampling temperature, resulted in the best extraction efficiency. Optimum desorption of PAHs from the SPME fiber in the GC hot injection port was achieved at 290 °C for 5 min. The method was developed using spiked water sample such as field water with a range of 0.1-200 μg/L PAHs. Detection limits varied from 0.03 to 1.0 μg/L for different PAHs based on S/N = 3 and the relative standard deviations for repeatability were <13%. A real sample was collected from the scrubber water of an incineration system. PAHs of two to three rings were measured with concentrations varied from 0.35 to 7.53 μg/L. Recovery was more than 88% and R.S.D. was less than 17%. The proposed method is a simple, rapid, and organic solvent-free procedure for determination of PAHs in wastewater.  相似文献   

7.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

8.
In this study, ultrasound-assisted extraction conditions were optimized to maximize the yields of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol from S. alexandrina (aerial parts). The three UAE factors, extraction temperature (S1), extraction time (S2), and liquid to solid ratio (S3), were optimized using response surface methodology (RSM). A Box–Behnken design was used for experimental design and phytoconstituent analysis was performed using high-performance liquid chromatography-UV. The optimal extraction conditions were found to be a 64.2 °C extraction temperature, 52.1 min extraction time, and 25.2 mL/g liquid to solid ratio. The experimental values of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol (2.237, 12.792, 2.457, 0.261, and 1.529%, respectively) agreed with those predicted (2.152, 12.031, 2.331, 0.214, and 1.411%, respectively) by RSM models, thus demonstrating the appropriateness of the model used and the accomplishment of RSM in optimizing the extraction conditions. Excellent antioxidant properties were exhibited by S. alexandrina methanol extract obtained using the optimized extraction conditions with a DPPH assay (IC50 = 59.7 ± 1.93, µg/mL) and ABTS method (47.2 ± 1.40, µg/mL) compared to standard ascorbic acid.  相似文献   

9.
Erica australis plants have been used in infusions and folk medicine for years for its diuretic and antiseptic properties and even for the treatment of infections. In addition, a recently published thorough study on this species has demonstrated its antioxidant, antibiotic, anti-inflammatory, anticarcinogenic and even antitumoral activities. These properties have been associated with the high content of anthocyanins in E. australis leaves and flowers. The aim of the present research is to optimize an ultrasound-assisted extraction methodology for the recovery of the anthocyanins present in E. australis flowers. For that purpose, a Box Behnken design with response surface methodology was employed, and the influence of four variables at different values was determined: namely, the composition of the extraction solvents (0–50% MeOH in water), the pH level of those solvents (3–7), the extraction temperature (10–70 °C), and the sample:solvent ratio (0.5 g:10 mL–0.5 g:20 mL). UHPLC-UV-vis has been employed to quantify the two major anthocyanins detected in the samples. The extraction optimum conditions for 0.5 g samples were: 20 mL of solvent (50% MeOH:H2O) at 5 pH, with a 15 min extraction time at 70 °C. A precision study was performed and the intra-day and inter-day relative standard deviations (RSDs) obtained were 3.31% and 3.52%, respectively. The developed methodology has been successfully applied to other Erica species to validate the suitability of the method for anthocyanin extraction.  相似文献   

10.
In this work, zinc oxide/polypyrrole nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid‐phase microextraction fiber coating for extraction of ultra‐trace amounts of environmental pollutants, namely, phthalate esters, in water samples. The fiber nanocomposite were prepared by a two‐step process including the electrochemical deposition of polypyrrole on the surface of stainless steel in the first step, and electrochemical deposition of zinc oxide nanosheets in the second step. Porous structure together with zinc oxide nanosheets with the average diameter of 30 nm were observed on the surface by using scanning electron microscopy. The effective parameters on extraction of phthalate esters (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one‐variable‐at‐a‐time method. Under optimized conditions (extraction temperature, 90°C; extraction time, 40 min; desorption temperature, 270°C; desorption time, 5 min; salt concentration, 25% w/v; and stirring rate, 1000 rpm), the limits of detection were in the range of 0.05–0.8 μg/L, and the repeatability and fiber‐to‐fiber reproducibility were in the ranges of 6.1–7.3% and 8.7–10.2%, respectively.  相似文献   

11.
In this study we define the optimal conditions for ultrasound-assisted extraction of bioactive polyphenols from S. raeseri aerial parts using response surface methodology. The influence of ethanol concentration (10–90%), extraction temperature (20–80 °C), extraction time (10–60 min), and solid-to-solvent ratio (1:10–1:50) on total phenolic content as well as on content of individual flavonoids, and hypolaetin and isoscutellarein derivatives was studied. For the experimental design, a central composite design was chosen. In the obtained extracts, the following ranges of targeted compounds were detected: total phenol from 19.32 to 47.23 mg GAE/g dw, HYP from 1.05 to 11.46 mg/g dw, ISC 1 from 0.68 to 10.68 mg/g dw, and ISC 2 from 0.74 to 15.56 mg/g dw. The optimal extraction conditions were set as: ethanol concentration of 65%, extraction time of 50 min, extraction temperature of 63 °C, and solid-to-solvent ratio of 1:40. Contents of TP, HYP, ISC 1, and ISC 2 in optimal extracts were 47.11 mg GAE/g dw, 11.73 mg/g dw, 9.54 mg/g dw, and 15.40 mg/g dw, respectively. Experimentally set values were in good agreement with those predicted by the response surface methodology model, indicating suitability of the used model, as well as the success of response surface methodology in optimizing the conditions of the extraction.  相似文献   

12.
Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC–MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10–200 ng PAHs, with 10-mL ethylene glycol–1 mol L−1 NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS–DVB fiber at 35 °C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 °C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents.  相似文献   

13.
In this study, the viability of two membrane‐based microextraction techniques for the determination of endocrine disruptors by high‐performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid–liquid extraction and hollow‐fiber‐supported dispersive liquid–liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2‐ethylhexyl‐4‐methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid–liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1‐octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5–4.6 μg/L and the limits of quantification were 2–16 μg/L. The analyte relative recoveries were 67–116%, and the relative standard deviations were less than 15.5%.  相似文献   

14.
A sensitive and useful method based on solid-phase microextraction with micellar desorption (SPME-MD) coupled to HPLC with fluorescence detection was developed for the determination of five fluoroquinolones (levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, and sarafloxacin) in environmental water matrices. The SPME extraction efficiency was optimized with regard to time, temperature, pH, and ionic strength using a CW-TPR fiber. A detailed study about the optimum conditions for micellar desorption (surfactant type, concentration, and desorption time) were made. Among different surfactants studied, Polyoxyethylene 10 lauryl ether showed the best responses to extract fluoroquinolones using SPME-MD. Relative standard deviations of the developed method were below 9%. Limits of detection and quantification were between 0.01–0.2 and 0.03–0.6 ng mL−1, respectively. The recoveries achieved for all five compounds were in the 81–116% range. The proposed method was compared using conventional desorbing agent as methanol. Finally, the SPME-MD methodology was applied to the determination of these target analytes in several environmental liquid samples, including seawater, groundwater, and wastewater samples with excellent results.  相似文献   

15.
Cichorium intybus L. or chicory plants are a natural source of health-promoting compounds in the form of supplements such as inulin, as well as other bioactive compounds such as sesquiterpene lactones (SLs). After inulin extraction, chicory roots are considered waste, with most SLs not being harnessed. We developed and optimized a new strategy for SL extraction that can contribute to the conversion of chicory root waste into valuable products to be used in human health-promoting applications. In our work, rich fractions of SLs were recovered from chicory roots using supercritical CO2. A response surface methodology was used to optimize the process parameters (pressure, temperature, flow rate, and co-solvent percentage) for the extraction performance. The best operating conditions were achieved at 350 bar, 40 °C, and 10% EtOH as a co-solvent in a 15 g/min flow rate for 120 min. The extraction with supercritical CO2 revealed to be more selective for the SLs than the conventional solid–liquid extraction with ethyl acetate. In our work, 1.68% mass and a 0.09% sesquiterpenes yield extraction were obtained, including the recovery of two sesquiterpene lactones (8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin), which, to the best of our knowledge, are not commercially available. A mixture of the abovementioned compounds were tested at different concentrations for their toxic profile and anti-inflammatory potential towards a human calcineurin/NFAT orthologue pathway in a yeast model, the calcineurin/Crz1 pathway. The SFE extract obtained, rich in SLs, yielded results of inhibition of 61.74 ± 6.87% with 50 µg/mL, and the purified fraction containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin inhibited the activation of the reporter gene up to 53.38 ± 3.9% at 10 µg/mL. The potential activity of the purified fraction was also validated by the ability to inhibit Crz1 nuclear translocation and accumulation. These results reveal a possible exploitable green technology to recover potential anti-inflammatory compounds from chicory roots waste after inulin extraction.  相似文献   

16.
This work describes the development, optimization, and validation of a new method for the simultaneous determination of a wide range of pharmaceuticals (beta-blockers, lipid regulators…) and personal care products (fragrances, UV filters, phthalates…) in both aqueous and solid environmental matrices. Target compounds were extracted from sediments using pressurized hot water extraction followed by stir bar sorptive extraction. The first stage was performed at 1,500 psi during three static extraction cycles of 5 min each after optimizing the extraction temperature (50–150 °C) and addition of organic modifiers (% methanol) to water, the extraction solvent. Next, aqueous extracts and water samples were processed using polydimethylsiloxane bars. Several parameters were optimized for this technique, including extraction and desorption time, ionic strength, presence of organic modifiers, and pH. Finally, analytes were extracted from the bars by ultrasonic irradiation using a reduced amount of solvent (0.2 mL) prior to derivatization and gas chromatography–mass spectrometry analysis. The optimized protocol uses minimal amounts of organic solvents (<10 mL/sample) and time (≈8 h/sample) compared to previous existing methodologies. Low standard deviation (usually below 10 %) and limits of detection (sub-ppb) vouch for the applicability of the methodology for the analysis of target compounds at trace levels. Once developed, the method was applied to determine concentrations of these compounds in several types of sample (wastewater, seawater, pore water, and sediment) from Cadiz Bay (SW Spain). To our knowledge, these findings represent the first information available on the presence of some of the target compounds in the marine environment.  相似文献   

17.
Polypyrrole‐magnetite dispersive micro‐solid‐phase extraction method combined with ultraviolet‐visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole‐magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro‐solid‐phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole‐magnetite dispersive micro‐solid phase‐extraction conditions were sample pH 8, 60 mg polypyrrole‐magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole‐magnetite dispersive micro‐solid‐phase extraction with ultraviolet‐visible method showed good linearity in the range of 0.05–7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4–111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels.  相似文献   

18.
The detection of trace aroma compounds in samples with complex matrices such as Chinese liquor (Baijiu) requires a combination of several methods, which makes the analysis process very complicated. Therefore, a headspace solid-phase microextraction (HS-SPME) method coupled with two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) was developed for the quantitation of a large number of trace compounds in Baijiu. Optimization of extraction conditions via a series of experiments revealed that dilution of the alcohol content of 8 mL of Baijiu to 5%, followed by the addition of 3.0 g of NaCl and subsequent SPME extraction with DVB/CAR/PDMS fiber coating over 45 min at 45 °C was the most suitable. To check the matrix effects, various model Baijiu matrices were investigated in detail. The quantitative method was established through an optimized model synthetic solution, which can identify 119 aroma compounds (esters, alcohols, fatty acids, aldehydes and ketones, furans, pyrazines, sulfur compounds, phenols, terpenes, and lactones) in the Baijiu sample. The developed procedure provided high recovery (86.79–117.94%), good repeatability (relative standard deviation < 9.93%), high linearity (R2 > 0.99), and lower detection limits than reported methods. The method was successfully applied to study the composition of volatile compounds in different types of Baijiu. This research indicated that the optimized HS-SPME–GC×GC-TOFMS method was a valid and accurate procedure for the simultaneous determination of different types of trace compounds in Baijiu. This developed method will allow an improved analysis of other samples with complex matrices.  相似文献   

19.
Radix Astragali is referred to as a variety of food-medicine herb, and it is commonly applied as Traditional Chinese Medicine (TCM). However, it is extremely difficult to extract its bio-active compounds (astragaloside IV) and apply it in food processing efficiently, which restricts its practical applications. In this study, the conditions required for the extraction of astragaloside IV were optimized by following the response surface methodology. More specifically, ammonia with a concentration of 24% was used as an extracting solvent, the solid–liquid ratio was 1:10 (w:v); the Radix Astragali was soaked at 25 °C for 120 min in advance and then stirred at 25 °C for 52 min (150 rpm) to extract astragaloside IV. This method promoted the transformation of other astragalosides into astragaloside IV and replaced the traditional approach for extraction, the solvent reflux extraction method. The yield of astragaloside IV reached the range of 2.621 ± 0.019 mg/g. In addition, the stability of astragaloside IV was evaluated by detecting its retention rate during sterilization and 60-day storage. As suggested by the results, the astragaloside IV in acidic, low-acidic, and neutral solutions was maintained above 90% after sterilization (95 °C and 60 min) but below 60% in an alkaline solution. High temperature and short-term sterilization approach is more appropriate for astragaloside IV in an alkaline solution. It was also found out that the astragaloside IV obtained using our method was maintained over 90% when stored at room temperature (25 °C), and there was no significant difference observed to low temperature (4 °C) in solutions regardless of acidity.  相似文献   

20.
Yan CT  Shih TS  Jen JF 《Talanta》2004,64(3):650-654
Microwave-assisted desorption (MAD) coupled to in situ headspace solid-phase microextraction (HS-SPME) was first proposed as a possible alternative pretreatment of samples in absorbent collected from workplace monitoring. Aniline collected on silica gel was investigated. Under microwave irradiation, the aniline was desorbed from silica gel and directly absorbed onto the SPME fiber in the headspace. Having been sampled on the SPME fiber, and desorbed in the GC injection port, aniline was analyzed using a GC-FID system. Parameters that affect the proposed extraction efficiency, including the extraction media and its pH, the microwave irradiation power and the irradiation time as well as desorption parameters of the GC injector, were investigated. Experimental results revealed that the extraction of a 150-mg silica gel sample using a 0.8-ml aqueous solution (pH 12) and a PDMS/DVB fiber under medium-high-powered irradiation (345 W) for 3 min maximized the efficiency of extraction. Desorption of aniline from the SPME fiber was optimal at 230 °C held for 3 min. The detection limit was 0.09 ng. The proposed method provided a simple, fast, and organic solvent-free procedure to analyze aniline from a silica gel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号