首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultraviolet (UV) photon induced decomposition of acetaldehyde adsorbed on the oxidized rutile TiO2(1 1 0) surface was studied with photon stimulated desorption (PSD) and thermal programmed desorption (TPD). Acetaldehyde desorbs molecularly from TiO2(1 1 0) with minor decomposition channels yielding butene on the reduced TiO2 surface and acetate on the oxidized TiO2 surface. Acetaldehyde adsorbed on oxidized TiO2(1 1 0) undergoes a facile thermal reaction to form a photoactive acetaldehyde–oxygen complex. UV irradiation of the acetaldehyde–oxygen complex initiated photofragmentation of the complex resulting in the ejection of methyl radical into gas phase and conversion of the surface bound fragment to formate.  相似文献   

2.
The adsorption of 0.25, 0.5 and 1 monolayer (ML) of the transition metal Ni on the metal substrate Al(1 1 0) was studied using first-principles calculations at the level of density functional theory. The metal–metal system was analyzed with the generalized gradient approximation. Four stable atomic configurations were considered, and the optimized geometries and adsorption energies of different Ni adsorption sites on the Al(1 1 0) surface at selected levels of coverage were calculated and compared. The four-fold hollow site was determined to be the most stable adsorption site with adsorption energy of 5.101 eV at 0.25 ML, 3.874 eV at 0.5 ML and 3.665 eV at 1 ML. The adsorption energies of the four sites slightly decreased as the Ni coverage increased. Work function analysis showed that when Ni is adsorbed on the Al(1 1 0) surface, the work function decreased as the coverage increased due to depolarization. The Mulliken population and density of states were calculated to determine the charge distribution of the adsorption site, confirming that a chemisorption interaction exists between the adsorbed Ni atom and Al(1 1 0) surface atoms.  相似文献   

3.
V.M. Bermudez 《Surface science》2010,604(7-8):706-712
The adsorption of dimethyl methylphosphonate (DMMP) on the (0 1 0) surface of anatase TiO2, which is isostructural with the (1 0 0), has been studied using density functional theory and two-dimensionally-periodic slab models. The experimentally-observed faceting of this surface has, for the first time, been included in the modeling. The relaxations of bare surfaces both with and without faceting are similar, leading to an atomic-scale roughening due to inward (outward) displacement of fivefold-coordinated Ti5c (sixfold-coordinated T6c) atoms together with outward displacement of threefold-coordinated O3c atoms. Molecular adsorption occurs by formation of a Ti5c?OP dative bond with one or more CH?O2c bonds between CH3 groups and unsaturated, twofold-coordinated (O2c) sites. The energies for molecular adsorption, obtained using the B3LYP functional, are virtually identical (about ?21.0 kcal/mol) for the two surfaces and are also close to those found elsewhere for the rutile (1 1 0) and anatase (1 0 1) surfaces. A possible first step in the dissociative adsorption of DMMP has also been modeled and is found to be thermodynamically favored over molecular adsorption to a degree which depends on faceting.  相似文献   

4.
The formation and structure of monolayer PdRu/Ru(0 0 0 1) surface alloys and their adsorption properties with respect to deuterium adsorption were investigated by atomic resolution scanning tunneling microscopy and by temperature programmed desorption. Surface alloys, prepared by deposition of up to one monolayer of Pd and flash annealing to 1150 K show (i) negligible loss of Pd by desorption or diffusion into the Ru bulk during this procedure and (ii) dominant phase separation into 2D Pd and Ru islands, in contrast to the random distribution in PtRu/Ru(0 0 0 1) surface alloys [H.E. Hoster, A. Bergbreiter, P.M. Erne, T. Hager, H. Rauscher, R.J. Behm, Phys. Chem. Chem. Phys. 10 (2008) 3812]. 2D short-range order parameters and the abundance of specific adsorption ensembles were evaluated for different Pd contents, effective pair interaction (EPI) energies were derived from Monte Carlo simulations. Deuterium adsorption on Pd monolayer films shows a pronounced weakening of adsorption bond, which is attributed to compressive strain and metal–metal interactions between Pd and underlying Ru atoms (‘vertical ligand effect’). Mixed adsorption ensembles containing both Pd and Ru atoms give rise to D2 desorption in the intermediate temperature regime. The impact of the specific lateral distribution of the two metal species on the chemical surface properties is illustrated by comparison with deuterium adsorption on dispersed PtRu/Ru(0 0 0 1) surface alloys [T. Diemant, H. Rauscher, R.J. Behm, J. Phys. Chem. C 112 (2008) 8381].  相似文献   

5.
Density functional theory is used to analyze in detail the adsorption of the adenine molecule on the (1 1 0) surfaces of Cu, Ag, and Au. While the adsorption configurations are similar in all three cases – the molecule bonds via two nitrogen atoms to the substrate – the details like charge transfer or local strain a rather different. The molecule–substrate interaction in case of Cu is stronger than for the more noble metals Ag and Au. Longe-range dispersion forces stabilize the adsorption configuration in dependence on the specific adsorption geometry. In case of Ag and Au, relativistic effects are found to be important.  相似文献   

6.
《Surface science》2006,600(8):1654-1658
We present a theoretical study of the metallization of Ge(0 0 1)-p(2 × 1) surface which is observed in experimental data. We have considered the connection between thermal fluctuation of this surface structure and its metallic properties. To this end we have performed long-time MD-DFT simulations. The obtained results show that thermal fluctuation of the Ge(0 0 1)-p(2 × 1) structure may cause its metallization which in not necessary connected with a flip-flop motion of dimer atoms. It was shown that the metallization of the Ge(0 0 1)-p(2 × 1) surface takes place when the dimer buckling angle is reduced to around 11°. In the case of our simulations the considered surface system remained in the metallic state for 25% of the simulation time. We have also found that the metallic state of the fluctuating Ge(0 0 1)-p(2 × 1) surface is built up by dangling bonds of the dimer atoms shifted up (Dup) and down (Ddown).  相似文献   

7.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

8.
According to the aim to compose combinatorial material by adsorption of carbon nanotubes onto the structured CeO2 surface the interaction of the armchair (5,5) and zigzag (8,0) nanotubes with the (0 0 1) and (1 1 1) surfaces of CeO2 islands have been investigated by theoretical methods. The thermodynamics of the adsorption were studied at the low surface coverage region. The interaction energy between the nanotube and the different CeO2 surfaces shows significant increase when the size of the interface reaches 7–8 unit cells of CeO2 and it remains unchanged in the larger interface region. However, the entropy term of the adsorption is significantly high when the distances of CeO2 islands are equal to 27 nm (adsorption of armchair (5,5) nanotube) or 32 nm (adsorption of zigzag (8,0) nanotube). This property supports adsorption of nanotubes onto CeO2 surfaces which possesses a very specific surface morphology. A long-wave vibration of nanotubes was identified as background of this unexpected phenomenon. This observation could be applicable in the development of such procedures where the nanotube adsorption parallel to the surface is aimed to perform.  相似文献   

9.
The interaction between Au nano-particles and oxide supports is recently discussed in terms of the catalytic activities. This paper reports the electronic charge transfer between Au nano-particles and TiO2-terminated SrTiO3(0 0 1) substrate, which is compared with that for stoichiometric(S)-, pseudo-stoichiometric(S1)- and reduced(R)-TiO2(1 1 0) supports. We observed the photoelectron spectra of Au 4f, O 2s, Ti 3p, and Sr 4p lines and also measured the work functions for Au/oxides supports using synchrotron-radiation light. As the results, all the O 2s, Ti 3p, and Sr 4p lines for Au/SrTiO3(0 0 1) show lower binding energy shifts in a quite same manner and abrupt increase in the work function is seen in an initial stage. This clearly evidences an electronic charge transfer from the substrate to Au probably due to a much larger work function of Au than SrTiO3(0 0 1), which leads to an upward band bending (0.3 eV) just like a Schottky contact. Electronic charge transfers also take place at Au/S- and Au/S1-TiO2(1 1 0) and Au/R-TiO2(1 1 0) interfaces, where electrons are transferred from Au to S- and S1-TiO2 and from R-TiO2 to Au, as predicted by ab initio calculations.  相似文献   

10.
We have compared the adsorption properties of small Aun (n = 1–8) nanoparticles on the defect-free (stoichiometric) and defective (partially reduced) brookite TiO2(210) and anatase TiO2(101) surfaces using density functional theory calculations. The interaction between Au atoms and anatase TiO2(101) was determined to be quite weak and small Aun particles grown at defects (O vacancies) prefer extended 2D structures. By contrast, dispersion and 3D configurations appear to be favored at brookite TiO2(210) for Aun nanoparticles due to their strong interaction. Calculations of CO oxidation at Aun (n = 6–8) particles supported at defective brookite TiO2(210) show that occurrence of protruding low-coordinated Au atoms is essential for favorable CO adsorption and subsequent reaction with O2. In particular, the configuration of the Aun nanoparticles can determine the energetics in the formation of active Au atoms, and their mobility also affects the reaction between CO and O2 (or O).  相似文献   

11.
We have investigated the adsorption of molecular (gaseous) SiO2 on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. The SiO2 molecule is found to be chemisorbed on various sites on the Si surface and the most energetically favourable structure is on top of the dimers. The minimum energy pathways for the various adsorption channels indicate that the reaction is barrierless in all cases. The corresponding vibrational spectrum is also calculated and the adsorbed molecules are, as expected, found to have red-shifted vibrational frequencies. The energetically favourable adsorption sites and adsorption energies are comparable to the results found for SiO.  相似文献   

12.
Karl Jacobi  Yuemin Wang 《Surface science》2009,603(10-12):1600-1604
The interaction of NO with the O-rich RuO2(1 1 0) surface, exposing coordinatively unsaturated O-bridge, O-cus, and Ru-cus atoms, was studied at 300 K by thermal desorption spectroscopy (TDS) and high-resolution electron energy-loss spectroscopy (HREELS). The conclusions are validated by isotope substitution experiments with 18O. During exposure to NO an O···N–O surface group (NO2-cus) is formed with O-cus. Additionally, a smaller number of empty Ru-cus sites are filled by NO-cus. If one warms the sample to 400 K, NO2-cus does not desorb but decomposes into O and NO again, the latter being either released into gas phase or adsorbed as NO-cus. With O-bridge such a surface group is not stable at 300 K. Our experiments further prove that O-cus is more reactive than O-bridge.  相似文献   

13.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

14.
We present a density-functional theory study addressing the energetics and electronic structure properties of isolated oxygen adatoms at the SrTiO3(0 0 1) surface. Together with a surface lattice oxygen atom, the adsorbate is found to form a peroxide-type molecular species. This gives rise to a non-trivial topology of the potential energy surface for lateral adatom motion, with the most stable adsorption site not corresponding to the one expected from a continuation of the perovskite lattice. With computed modest diffusion barriers below 1 eV, it is rather the overall too weak binding at both regular SrTiO3(0 0 1) terminations that could be a critical factor for oxide film growth applications.  相似文献   

15.
The adsorption of H2S on Fe(1 0 0) is examined using ab initio molecular dynamics at 298 and 1808 K. Dissociation of H2S occurs at both temperatures simulated, to leave adsorbed S and two H atoms. The dissociation occurs via a two step process and the mechanism is found to be different depending on the temperature of the reaction. At 1808 K, diffusion of the dissociated H atoms into the subsurface region is also observed.  相似文献   

16.
S.H. Ma  Z.Y. Jiao  Z.X. Yang 《Surface science》2010,604(9-10):817-823
The adsorption of sulfur on Co(0 0 0 1) was studied using density functional theory calculations at coverage from 0.11 ML to 1.0 ML. Calculated results indicate that atomic S favors in hollow sites with bond S–Co dominated at lower coverage and at higher coverage the strong adsorbate S–S interaction leads to the formation of S2 species. It was shown that the adsorption energy generally increases (gets weaker) with the coverage in a near linear fashion for the most stable configurations. In addition, modification of the surface electronic properties has been discussed and some discrepancy are found between our calculations and the findings of O adsorption on Au(1 1 1) and Pt(1 1 1) surfaces.  相似文献   

17.
Fe3O4 nanoparticles and thin films were prepared on the Au(1 1 1) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing α-Fe2O3(0 0 0 1) structures on Au(1 1 1) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the α-Fe2O3(0 0 0 1) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at ~2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of ~50 and ~42 Å, respectively. As the Fe3O4 particles form more continuous films, the ~50 Å feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a ~3 Å periodicity in the atomically resolved STM images.  相似文献   

18.
We present a summary of results of systematic first principles calculations of the electronic and geometric structures of the Cu2O(1 0 0) surface and the process of CO oxidation on this surface (energetics and pathways of adsorption, diffusion and reactions of CO and O2 on the surface). The (p, T) phase diagram of the Cu2O(1 0 0) in equilibrium of with gas phase O2 built using the ab initio thermodynamics approach suggests that the O-terminated surface is preferred over the Cu-terminated one within the entire ranges of pressures and temperatures in which the compound exists. Metastable Cu-terminated Cu2O(1 0 0) is found to undergo a surface reconstruction in agreement with experiment. We find CO to oxidize spontaneously on the O-terminated Cu2O(1 0 0) surface by consuming surface O atoms. Our calculations also show that the surface O-vacancies left in the course of the CO oxidation can be easily filled with dissociative adsorption of the gas phase O2 molecules, which are usually present in reaction environment.  相似文献   

19.
We have used coaxial impact-collision ion scattering spectroscopy (CAICISS) and time-of-flight elastic recoil detection analysis (TOF-ERDA) to investigate the adsorption of atomic hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface. It has been found that the saturation coverage of hydrogen on the 6H-SiC(0 0 0 1)√3×√3 surface is about 1.7 ML. Upon saturated adsorption of atomic hydrogen, the √3×√3 surface structure changes to the 1×1 structure. The data of the CAICISS measurements have indicated that as a result of the hydrogen adsorption, Si adatoms on the √3×√3 surface move from T4 to on-top sites.  相似文献   

20.
E. Demirci  A. Winkler 《Surface science》2010,604(5-6):609-616
Co-adsorption of hydrogen and CO on Cu(1 1 0) and on a bimetallic Ni/Cu(1 1 0) surface was studied by thermal desorption spectroscopy. Hydrogen was exposed in atomic form as generated in a hot tungsten tube. The Ni/Cu surface alloy was prepared by physical vapor deposition of nickel. It turned out that extended exposure of atomic hydrogen leads not only to adsorption at surface and sub-surface sites, but also to a roughening of the Cu(1 1 0) surface, which results in a decrease of the desorption temperature for surface hydrogen. Exposure of a CO saturated Cu(1 1 0) surface to atomic H leads to a removal of the more strongly bonded on-top CO (α1 peak) only, whereas the more weakly adsorbed CO molecules in the pseudo threefold hollow sites (α2 peak) are hardly influenced. No reaction between CO and H could be observed. The modification of the Cu(1 1 0) surface with Ni has a strong influence on CO adsorption, leading to three new, distinct desorption peaks, but has little influence on hydrogen desorption. Co-adsorption of H and CO on the Ni/Cu(1 1 0) bimetallic surface leads to desorption of CO and H2 in the same temperature regime, but again no reaction between the two species is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号