首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Polystyrene–divinylbenzene (8%) has been functionalised by coupling it through an ---N=N--- group with 6-mercaptopurine. The resulting chelating resin has been characterised by using elemental analysis, thermogravimetric analysis and infrared spectra. The resin is highly selective for Hg(II) and Ag(I) and has been used for preconcentrating Hg(II) and Ag(I) prior to their determination by atomic absorption spectrometry. The maximum sorption capacity for Hg(II) and Ag(I) was found to be 1.74 and 0.52 mmol g−1, respectively, over the pH range 5.5–6.0. The calibration range for Hg(II) was linear up to 10 ng ml−1 with a 3σ detection limit of 0.02 ng ml−1; the calibration range for Ag(I) was linear up to 5 μg ml−1 with a detection limit of 29 ng ml−1. The recoveries of the metals were found to be 99.7±3.8 and 101.3±4.1% at the 95% confidence level for both Hg(II) and Ag(I). In column operation, it has been observed that Hg(II) and Ag(I) in trace quantities can be selectively separated from geological, medicinal and environmental samples.  相似文献   

2.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

3.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

4.
Commercial non-food packaging materials of four different matrices (paper, low density polyethylene (LDPE), polyethylene-polypropylene (PE-PP) and high density polyethylene (HDPE)) were examined for the content of Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U. The examined samples (0.17–0.35 g) were digested in HNO3 and H2O2 (papers, LDPE and PE-PP) and in HNO3, H2SO4 and H2O2 (HDPE) using microwave assisted high pressure system. The inductively coupled plasma-time of flight-mass spectrometry (ICP-TOFMS) has been employed as the detection technique. All measurements were carried out using internal standardization. Yttrium and rhodium (50 ng g−1) were used as internal standards. The detection and quantification limits obtained were in the range of 0.005 ng g−1 (52Cr) to 0.51 ng g−1 (66Zn) and 0.015 μg g−1 (52Cr) to 2.02 μg g−1 (66Zn) of dry mass, respectively. The evaluated contents (mg kg−1) of particular elements in the examined materials were as follows: 0.22–219; <1.05–9.03; 1.25–112; <2.02–449; <0.98–<1.30; <0.36–2.06; <0.29–113; <0.22–44.1; <0.06–57.4; <0.66–<0.88; <0.08–0.24; <0.13–1222 and <0.08–0.44 for Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U, respectively.  相似文献   

5.
Analytical procedures have been developed for the reliable determination of 19 trace elements (Ag, Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Pb, Rb, Sb, Sc, Sr, Tl, U, V, Zn) in ice samples at pg g−1 and fg g−1 concentrations using ICP-sector field mass spectrometry (ICP-SMS). Concentrations of most elements in the high purity water and doubly distilled HNO3 employed were distinctly lower than previously reported values. The accuracy of the results was carefully evaluated using the certified water reference material SLRS-4. Contributions of unwanted trace elements due to acidification of the ice samples (0.5% HNO3) to the total element budget amounted to only 0.001 pg g−1 for Bi, 0.34 pg g−1 for Cr, 0.2 pg g−1 for Fe, 0.004 pg g−1 for Pb, 0.00015 pg g−1 for U and 0.0025 pg g−1 for V: compared to the concentrations of the metals in ice these are negligible. The use of a detergent (0.05%) in the rinsing solution (0.5% HNO3), helped to reduce memory effects by 59–98%, depending on the element considered; this resulted in shorter washing times between samples (i.e. 1 min) and improved analysis time. Adopting strict clean room procedures, the detection limit for Pb (0.06 pg g−1) is a factor of ten lower than the current state-of-the-art. Compared to previous studies, the improved LODs obtained here for other trace elements amount to 2× (Ag), 4× (Sb), 5× (Ba), 6× (Cu, Mn, U), 9× (Bi), 13× (Cd), 18× (Fe) and 21× (V). The developed analytical protocols were successfully applied to the determination of selected trace elements in age-dated ice samples from the Canadian High Arctic. The toxic trace element Tl (median: 0.16 pg g−1; range: 0.03–1.32 pg g−1) and the lithogenic reference element Sc (0.53 pg g−1; 0.06–2.9 pg g−1) have been determined in a polar ice core for the first time.  相似文献   

6.
A solvent impregnated hollow fibre (SIHF) module has been developed for the preconcentration of lead by using bis(2-ethylhexyl) phosphoric acid (DEHPA) dissolved in kerosene as extractant. The module has been designed for an on-line determination of trace amounts of lead(II) at mg l−1 (ppm) level by flame atomic absorption spectrometry (FAAS).

The SIHF system is based on the metal liquid–liquid distribution between aqueous solutions of different acidity and the mentioned organic solution. The highest enrichment factor of Pb(II) was determined at pH=4.0 using a formic acid/formiate buffer solution.

Preconcentration experiments were carried out at low lead(II) concentration (mg l−1 level) by using the SIHF module. This study includes the influence of hydrodynamic and chemical conditions on the loading and elution of Pb(II) on the SIHF, i.e., flow rate through the fibres, acidity of the eluent (as nitric acid concentration) and the chemical nature of the acid used in the elution. Breakthrough curves were determined for different sampling flow rates, 0.54 ml min−1 was selected to minimise the loading volume of Pb(II) sample. 0.1 M nitric acid was chosen as eluent solution, and perchloric acid also shows appropriate elution characteristics. The degree of concentration obtained for Pb(II) are of 10 fold the original concentration. The quantification limit for Pb(II) achieved with this preconcentration system is 0.17 mg l−1.

The results obtained indicate that the SIHF system can be applied for on-line determination of trace amounts of lead(II) by FAAS.  相似文献   


7.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

8.
Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) coupled with gas chromatography (GC) have been evaluated as element specific detectors for the determination of methylmercury in marine samples. Detection limits for methylmercury chloride, obtained using ICP-MS and AFS, were 0.9 and 0.25 pg as Hg, respectively. Methylmercury was determined in marine tissue reference materials IAEA 142 and NIST 8044 mussel homogenate, and DOLT-2 dogfish liver by GC–AFS, with found values of 45±7, 26±4, and 671±41 ng g−1, compared with certified values of 47±4, 28±2, and 693±53 ng g−1. The analyses of IAEA 142 and NIST 8044 were repeated using GC–ICP-MS, with found values of 48±9 and 30±3 ng g−1, respectively. Methylmercury was determined in real samples of ringed seal and beluga whale, with found values of 801±62 and 2830±113 ng g−1, respectively.  相似文献   

9.
The properties and behaviour of Hg depend on both the oxidation state and the chemical form: the bioavailability, toxicity, persistence and accumulation of mercury in the food web are strongly influenced by chemical speciation. The present work aims to determine the chemical forms of mercury present in soil and to evaluate the fraction of mercury in soil solution available to plants. In order to do this, we analyzed eight samples of contaminated soils with Hg concentrations ranging from 1.31 to 21.7 mg kg−1, collected from different depths (0–10 and 40–50 cm) close to an abandoned industrial site in Val Basento (southern Italy). Two innovative analytical techniques were used: HPLC–ICP-MS and diffusive gradient in thin films (DGT). The analytical procedure was validated using ERM 580-certified sediment and spiked samples in the case of HPLC–ICP-MS, and by a performance test in the case of DGT. In all samples, the only species found in soil and soil solution was MeHg+ and Hg2+. In soil, the MeHg+/Hgtot ratio ranged from 0.05% to 0.82%; total mercury in soil solution was less than 0.01% of total mercury in soil. The percentage of MeHg+ in soil solution varied considerably (from 0% to 50%), with a maximum concentration of 0.02 mg L−1. The root available concentration evaluated by DGT is comparable to the total mercury content of the soil solution measured by HPLC–ICP-MS. The DGT results suggest that all mercury in solution is available for uptake in DGT, and that mercury is supplied from soil to solution. However, for all samples the soluble and root available (DGT-labile) fractions of mercury are generally very low with respect to the total mercury concentration. This study confirmed that both HPLC–ICP-MS and DGT techniques are suitable tools for the estimation of Hg root availability and in assessing the risk from contaminated soils.  相似文献   

10.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

11.
Grobecker KH  Detcheva A 《Talanta》2006,70(5):962-965
Certified reference materials (CRMs) of different origin were used to validate the direct determination of total mercury by solid sampling Zeeman atomic absorption spectrometry (SS-ZAAS) and a specially designed furnace. The temperature program provides only for one step. Atomisation of mercury and pyrolysis of the matrix is performed at a constant temperature in the range of 900–1000 °C. Calibration points achieved by CRMs and aqueous solutions are covered by one calibration line, indicating the absence of matrix effects. Relatively high amounts of chlorine, known for causing problems in mercury determination do not influence analytical results. The excellent accuracy of the method results in a very good agreement with the certified values. The precision of SS-ZAAS measurements in a range from 0.5 to 50 ng Hg does not exceed 3% R.S.D. A limit of quantification of 0.008 μg g−1 Hg was achieved.  相似文献   

12.
The reaction of ethylene sulfide with 3-aminopropyltrimethoxysilane gave a new silylating agent, which was anchored onto a silica surface via the sol–gel procedure. This surface displayed a chelating moiety containing nitrogen and two sulfur basic centers potentially capable of extracting cations from aqueous solutions. The process of metal extraction was followed by a batch method, and fitted to a modified Langmuir equation. The maximum adsorption capacities found were: 2.06 ± 0.01, 3.72 ± 0.02, and 5.14 ± 0.02 mmol g−1 for Pb(II), Cd(II), and Hg(II), respectively. The enthalpies of bending are: −1.16 ± 0.04, −3.60 ± 0.10, and −8.94 ± 0.03 kJ mol−1 for Cd(II), Pb(II), and Hg(II), respectively. The Gibbs free energies of binding agree with the spontaneity of the proposed reactions between cations and basic centers.  相似文献   

13.
Activated silica gel was directly modified with a cyclic molecule, ethyleneimine, yielding a surface with various nitrogen basic centers, ≡Sil–O(CH2CH2NH)nCH2CH2NH2. Infrared spectroscopy, 13C NMR, thermal, and elemental analyses confirmed the covalent attachment of the organic species onto the silica matrix. The purpose of this paper is to describe the interaction involving the grafted species on silica surface with the divalent heavy cations, Pb(II), Cd(II), and Hg(II), from aqueous solutions at room temperature. The process of metal extraction was followed by the batch method and the order of the maximum extraction capacities found was: 1.27 ± 0.04, 1.02 ± 0.02, and 0.98 ± 0.01 mmol g−1 for Pb(II), Cd(II), and Hg(II) chlorides, respectively. These interactions were followed by calorimetric titration. The enthalpies of these processes are: −3.05 ± 0.02, −1.09 ± 0.01, and −9.88 ± 0.03 kJ mol−1 for Pb(II), Cd(II), and Hg(II), respectively. The standard molar Gibbs free energies are in agreement with the spontaneity of the proposed reactions between cation and basic center.  相似文献   

14.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

15.
Praus P 《Talanta》2004,62(5):977-982
An isotachophoresis (ITP)–capillary zone electrophoresis (CZE) combination was used for the determination of chlorite in drinking waters. No sample preparation is needed and no interfering by other anions in tap water was observed. The reached limits of detection with conductivity detector were 0.012–0.017 mg l−1. By four-fold sample loading with a 30 μl valve, 0.005 mg l−1 of chlorite was determined with R.S.D.=3.3%. The concentrations of 0.05 and 0.20 mg l−1 were measured with R.S.D. of 2.2 and 2.7%, respectively. The recoveries of chlorite from drinking water were 96–106% in the range of 0.02–0.20 mg l−1. The R.S.D. values of migration times (inter-day) were up to 1.3%. The time for analysis is about 15 min.  相似文献   

16.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

17.
The new strong anion exchanger (PUFIX) from polyurethane foam was prepared by coupling of the primary amine of the foam matrix with ethyl iodide. PUFIX was characterized using different tools (IR spectra, elemental analysis, density and thermal analysis). The sorption properties of the new anion exchanger (PUFIX) and chromatographic behaviour for separation and determination of palladium(II) ions at low concentrations from aqueous iodide or thiocyanate media were investigated by a batch and dynamic processes. The maximum sorption of Pd(II) was in the pH range of 0.3–2. The kinetics of sorption of the Pd(II) by the PUFIX was found to be fast with average values of half-life of sorption (t1/2) of 3.32 min. The variation of the sorption of Pd(II) with temperature gives average values of ΔH, ΔS, ΔG and ΔE to be −38.3 kJ mol−1, −100.7 J K−1 mol−1, −8.3 and 11.8 kJ mol−1, respectively. The sorption capacity of PUFIX was 1.69 mmol g−1 for Pd(II), preconcentration factors of values ≈250 and the recovery 99–100% were achieved (R.S.D. ≈ 1.24%). The lower detection limit, 1.28 ng mL−1 was evaluated using spectrophotometric method (R.S.D. ≈ 2.46%).  相似文献   

18.
Amberlite XAD-16 resin has been functionalized using nitrosonaphthol as a ligand and characterized employing elemental, thermogravimetric analysis and FT-IR spectroscopy. The sorption of Ni(II) and Cu(II) ions onto this functionalized resin is investigated and optimized with respect to the sorptive medium (pH), shaking speed and equilibration time between liquid and solid phases. The monitoring of the influence of diverse ions on the sorption of metal ions has revealed that phosphate, bicarbonate and citrate reduce the sorption up to 10–14%. The sorption data followed Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherms. The Freundlich parameters computed are 1/n = 0.56 ± 0.03 and 0.49 ± 0.05, A = 9.54 ± 1.5 and 6.0 ± 0.5 mmol g−1 for Ni(II) and Cu(II) ions, respectively. D–R isotherm yields the values of Xm = 0.87 ± 0.07 and 0.35 ± 0.05 mmol g−1 and of E = 9.5 ± 0.23 and 12.3 ± 0.6 kJ mol−1 for Ni(II) and Cu(II) ions, respectively. Langmuir characteristic constants estimated are Q = 0.082 ± 0.005 and 0.063 ± 0.003 mmol g−1, b = (4.7 ± 0.2) × 104 and (7.31 ± 0.11) × 104 l mol−1 for Ni(II) and Cu(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantities of ΔH = −58.9 ± 0.12 and −40.38 ± 0.11 kJ mol−1, ΔS = −183 ± 10 and −130 ± 8 J mol−1 K−1 and ΔG = −4.4 ± 0.09 and −2.06 ± 0.08 kJ mol−1 at 298 K for Ni(II) and Cu(II) ions, respectively. Using kinetic equations, values of intraparticle transport and of first order rate constant have been computed for both the metal ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination in tea, vegetable oil, hydrogenated oil (ghee) and palm oil by atomic absorption spectrometry using direct and standard addition methods.  相似文献   

19.
Hashemi P  Rahmani Z 《Talanta》2006,68(5):1677-1682
Homocystine was for the first time, chemically linked to a highly cross-linked agarose support (Novarose) to be employed as a chelating adsorbent for preconcentration and AAS determination of nickel in table salt and baking soda. Nickel is quantitatively adsorbed on a small column packed with 0.25 ml of the adsorbent, in a pH range of 5.5–6.5 and simply eluted with 5 ml of a 1 mol l−1 hydrochloric acid solution.

A factorial design was used for optimization of the effects of five different variables on the recovery of nickel. The results indicated that the factors of flow rate and column length, and the interactions between pH and sample volume are significant.

In the optimized conditions, the column could tolerate salt concentrations up to 0.5 mol l−1 and sample volumes beyond 500 ml. Matrix ions of Mg2+ and Ca2+, with a concentration of 200 mg l−1, and potentially interfering ions of Cd2+, Cu2+, Zn2+ and Mn2+, with a concentration of 10 mg l−1, did not have significant effect on the analyte's signal. Preconcentration factors up to 100 and a detection limit of 0.49 μg l−1, corresponding to an enrichment volume of 500 ml, were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked nickel in table salt and baking soda solutions resulted in quantitative recoveries. Direct ETAAS determination of nickel in the same samples was not possible because of a high background observed.  相似文献   


20.
Hydrogen peroxide in basic media is proposed as a means for dissolving whole blood samples to be analyzed by electrothermal atomization atomic absorption spectrometry, ET AAS. Approximately 2 g of the whole blood sample were directly weighed in a 150 mL volumetric flask; 3 mL of a NaOH 0.2 mol L−1 solution, two drops of 1-octanol, as an antifoaming agent, and 1 mL of 30% volume hydrogen peroxide were added to the flask to promote oxidation. The solution was then manually shaken and after approximately three minutes of shaking, a clear solution, with no apparent suspended solids or greasy layers, was obtained. Distilled-deionized water was used to complete the volume. Ten μL of the resulting solution along with 10 μL of a solution containing 5000 mg L−1 of NH4H2PO4 and 300 mg L−1 of Mg(NO3)2 as a modifier, were injected into transversely heated graphite tubes for lead determination. Both aqueous standards and standard addition calibration curves produced results not significantly different at a 95% confidence limit level. Accuracy of the measurements was assessed by analysis of the IAEA A-13 (concentration of trace and minor elements in freeze dried animal blood) standard reference material containing 0.18 mg L−1 lead on a dry basis and by means of recovery tests. Analysis of the IAEA A-13 standard produced 0.17 ± 0.02 mg L−1 lead on a dry basis; recovery tests afforded values from 95 to 105%. Ten consecutive measurements of a 5 ppb lead solution gave a characteristic mass of 47.2 pg and a (3S) detection limit of 1.77 μg L−1 Pb. Results obtained from analysis of whole blood samples of volunteer donors covered a lead concentration range between 8 and 21 μg L−1 with a mean value of 11.9 ± 4.7 μg L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号