首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The mechanism of hydrolysis of cellulose is important for improving the enzymatic conversion in bioprocesses based on lignocellulose. Adsorption and hydrolysis experiments were performed with cellobiohydrolase I (CBH I) and endoglucanase II (EG II) from Trichoderma reesei on a realistic lignocellulose substrates: steam-pretreated willow. The enzymes were studied both alone and in equimolar mixtures. Adsorption isotherms were determined at 4 and 40 degrees C during 90-min reaction times. Both CBH I and EG II adsorbed stronger at 40 than at 4 degrees C. The time course of adsorption and hydrolysis, 3 min to 48 h, was studied at 40 degrees C. About 90% of the cellulases were adsorbed within 2 h. The hydrolysis rate was high in the beginning but decreased during the time course. Based on adsorption data, the hydrolysis and synergism were analyzed as function of adsorbed enzyme. CBH I showed a linear correlation between hydrolysis and adsorbed enzyme, whereas for EG II the corresponding curve leveled off at both 4 and 40 degrees C. At low conversion, below 1%, EG II produced as much soluble sugars as CBH I. At higher conversion, CBH I was more efficient than EG II. The synergism as function of adsorbed enzyme increased with bound enzyme before reaching a stable value of about 2. The effect of varying the ratio of CBH I:EG II was studied at fixed total enzyme loading and by changing the ratio between the enzymes. Only a small addition (5%) of EG II to a CBH I solution was shown to be sufficient for nearly maximal synergism. The ratio between EG II and CBH I was not critical. The ratio 40% EG II:60% CBH I showed similar conversion to 5% EG II:95% CBH I. Modifications of the conventional endo-exo synergism model are proposed.  相似文献   

2.
The action of monocomponent Trichoderma reesei endoglucanases (EG I, EG II; EC 3.2.1.4) and cellobiohydrolases (CBH I, CBH II; EC 3.2.1.91) and their core proteins was compared using isolated celluloses and bleached chemical pulp. The presence of cellulose binding domain (CBD) in the intact enzymes did not affect their action against soluble substrates. In the case of insoluble isolated celluloses and the chemical pulp the presence of CBD enhanced the enzymatic hydrolysis of cellulose. The effect of CBD was more pronounced in the cellobiohydrolases, hydrolysing mainly crystalline cellulose, than in the endoglucanases which were more efficient in hydrolysing amorphous cellulose. The pulp properties measured, that is, viscosity and strength after PFI refining, were equally affected by the treatment with intact enzymes and corresponding core proteins, suggesting that the presence of CBD in intact cellulases affects mainly the cellulose hydrolysis level and less the mode of action of T. reesei cellulases in pulp. The better beatability of the bleached chemical pulp treated with intact endoglucanases than that treated with the corresponding core proteins suggests that the presence of CBD in endoglucanases could, however, result in beneficial effects on pulp properties.  相似文献   

3.
Degradation of bacterial cellulose with a commercial cellulase, Celluclast 1.5L (Novo Nordisk), from the fungus Trichoderma reesei, causes a rotational movement of the cellulose microfibrils. Purified cellulases (CBH I, CBH II, and EG II) do not induce rotation of bacterial cellulose, however, ratios of CBH I and EG II do cause rotation of bacterial cellulose. Equimolar amounts of CBH I or CBH II and EG II do not result in motion during degradation. Based on these observations, we provide further evidence supporting, at least on theoretical grounds, the hypothesis that cellulose chains have intrinsic chirality. As the cellulase enzymes interact with and degrade the cellulose fibrils, the crystalline structure of the cellulose is altered, allowing the linear cellulose polymers to relax into a lower energy state, thus relieving the strain induced by crystallization of the nascent -glucan chains during the biogenesis of the microfibril. This conversion of crystalline bacterial ribbons into more relaxed conformations produces the rotation observed during the treatment of bacterial cellulose with cellulase.  相似文献   

4.
Four purified cellulases, a xylanase and mannanase from Trichoderma reesei were used to treat never-dried bleached pine kraft pulp prior to refining, and the effects on pulp properties were evaluated. The enzymatic treatments hydrolysed up to 0.8% of pulp dry weight. The results demonstrated that the individual cellulases have profoundly different modes of action in modifying pulp carbohydrates. This is especially clear when comparing their effects at the same level of hydrolysis. Pretreatment with cellobiohydrolases I (CBH I) and II (CBH II) had virtually no effect on the development of pulp properties during refining, except for a slight decrease in strength properties. On the contrary, endoglucanase I (EG I) and endoglucanase II (EG II) improved the beatability of the pulp as measured by Schopper--Riegler value, sheet density and Gurley air resistance. Of the endoglucanases, EG II was most effective in improving the beating response. The combinations of CBH I with EG I and EG II had similar effects on the pulp properties as the endoglucanases alone, although the amount of hydrolysed cellulose was increased. Pretreatments with xylanase or mannanase did not appear to modify the pulp properties. The same enzyme treatments which improved the beatability, however, slightly impaired the pulp strength, especially tear index at the enzyme dosages used. When compared at a given level of cellulose hydrolysis, the negative effect of EG II on strength properties was more pronounced compared with EG I. Thus, the exploitation of cellulases for fibre treatments requires careful optimization of both enzyme composition and dosage. Since the endoglucanases had no positive effect on the development of tensile strength, it is suggested that the explanation for the increased beating response is increased fibre breakage and formation of fines, rather than improved flexibilization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Cellulases can be used to modify pulp fibres. For the development of biotechnical applications, a better understanding of the adsorption of cellulases onto commercial wood fibres is needed. In this work, the adsorption behaviour of purified CBH I and EG II on bleached Kraft fibres was investigated. Three variables were studied with respect to their effect on adsorption: fibre type (hardwood or softwood), fibre history (never-dried or once-dried), and ionic strength. The results showed that fibre history had the largest influence on the extent of adsorption of each enzyme. The effect of ionic strength was shown to be dependent on the enzyme and fibre type. At high ionic strength, CBH I exhibited a higher affinity for both once-dried and never-dried fibres at low enzyme concentrations; however, salt was shown to decrease the extent of adsorption at higher enzyme dosages. In contrast, salt increased the maximum adsorption of EG II, most notably on the once-dried hardwood fibres. Fibre type was also shown to affect adsorption behaviour. CBH I had a higher affinity for softwood fibres than for hardwood fibres at low enzyme concentrations. The maximum adsorption of EG II onto once-dried softwood fibres increased by 80% compared to the once-dried hardwood fibres. Interestingly, this did not correlate to in creased fibre hydrolysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The role of the cellulose ultrastructure on the relationship between cellulase binding and activity is not clear yet. In this article, a quartz crystal microbalance with dissipation (QCM-D) was employed to monitor the interactions between a given cellulase and the cellulose substrates with varied polymorphs of pure cellulose I and II and the intermediate state (I/II). Initially, cellulose nanocrystals (CNCs) with polymorphs of cellulose I, I/II and II were prepared and spin-coated on QCM sensors. The cellulose substrates’ crystallinity degree was examined by XRD, and morphology was detected by AFM. Then, a commercial cellulase from Trichoderma reesei was used to test the adsorption and hydrolysis of cellulose substrates with polymorphs of I, I/II and II, respectively. The results revealed that in the enzyme adsorption and desorption process at a temperature of 15 °C, CNC-II had the lowest adsorption capacity with a total adsorption mass of 179 ng cm?2 but the highest reversible binding ratio of 33.7%; for comparison, the values were 235 ng cm?2 versus 25.6% and 207 ng cm?2 versus 26.9% for CNC-I and -I/II, respectively. And the conformation of adlayers on CNC-I, -I/II and -II derived from the QCM data became softer and softer in turn. On the other hand, CNC-II exhibited the best enzymatic hydrolytic ability among three substrates when enzymatic hydrolysis experiments were conducted at 45 °C. The results indicated that polymorphic conversion from I to II changes the affinity between the enzyme and cellulose surface; CNC-II has the lowest affinity to the enzyme, but the softer conformation of the adsorbed enzyme layer, and the more reversible adsorption may facilitate its hydrolytic activity. This article gives a perspective from the adsorption dynamics and conformation of the adsorbed enzyme layer, helping to understand the superior hydrolytic activity of cellulose with polymorph II. Thus, there is a potential of polymorphic conversion in the reduction of enzyme dosage and cost in the enzymatic hydrolysis process.  相似文献   

7.
Adsorption to microcrystalline cellulose (Avicel) of pure cellobiohydrolase I and II (CBH I and CBH II) fromTrichoderma reesei has been studied. Adsorption isotherms of the enzymes were measured at 4‡C using CBH I and CBH II alone and in reconstituted equimolar mixtures. Several models (Langmuir, Freundlich, Temkin, Jovanovic) were tested to describe the experimental adsorption isotherms. The isotherms did not follow the basic (one site) Langmuir equation that has often been used to describe adsorption isotherms of cellulases; correlation coefficients (R2) were only 0.926 and 0.947, for CBH I and II, respectively. The experimental isotherms were best described by a model of Langmuir type with two adsorption sites and by a combined Langmuir-Freundlich model (analogous to the Hill equation); using these models the correlation coefficients were in most cases higher than 0.995. Apparent binding parameters derived from the two sites Langmuir model indicated stronger binding of CBH II compared to CBH I; the distribution coefficients were 20.7 and 3.7 L/g for the two enzymes, respectively. The binding capacity, on the other hand, was higher for CBH I, 1.0 Μmol (67 mg) per gram Avicel, compared to 0.57 Μmol/g (30 mg/g) for CBH II. The isotherms when analyzed with the combined Langmuir-Freundlich model indicated presence of unequal binding sites on cellulose and/or negative cooperativity in the binding of the enzyme molecules.  相似文献   

8.
We have investigated the reactivities of various cellulases onribbon-type bacterial cellulose (BC I) and band-shaped bacterial cellulose (BCII) so as to clarify the properties of different cellulases. BC I waseffectively hydrolyzed by exo-type cellulases from different fungi from twicetofour times as much as BC II, but endo-type cellulases showed little differencein reactivity on those substrates. One of the endo-type cellulases, EG II fromTrichoderma reesei, degraded BC II more rapidly thanexo-type cellulases even in the production of reducing sugars. The degree ofpolymerization (DP) of BC II was rapidly decreased by endo-type cellulases atanearly stage, while exo-type cellulases did not cause the decrease of DP atthe initial stage, though the decrease of DP was observed after an incubation of24 h. All exo-type cellulases adsorbed on BC I and BC II,whileendo-type cellulases except for EG II adsorbed slightly on both substrates. Itwas interesting to observe EG II adsorbed on BC I but not on BC II. It issuggested that the adsorption of enzyme on cellulose is important for thedegradation of BC I, but not for BC II. It is proposed that the ratio of aspecific activity of each enzyme between BC I and BC II represents thedifference in the mode of action of cellulase. Furthermore, the K RW value, which we can calculate from thedecrease of DP/reducing sugar produced, is effective for discriminating themode of action of cellulase, especially the evaluation of randomness in thehydrolysis of cellulose by endo- and exo-type cellulases.  相似文献   

9.
This article provides an overview of various theories proposed during the past five decades to describe the enzymatic hydrolysis of cellulose highlighting the major shifts that these theories have undergone. It also describes the effect of the cellulose-binding domain (CBD) of an exoglucanase/xylanase from bacterium Cellulomonas fimi on the enzymatic hydrolysis of Avicel. Pretreatment of Avicel with CBDCex at 4 and 37°C as well as simultaneous addition of CBDCex to the hydrolytic enzyme (Celluclast, Novo, Nordisk) reduced the initial rate of hydrolysis owing to irreversible binding of CBD proteins to the substrate's binding sites. Nonetheless, near complete hydrolysis was achieved even in the presence of CBDCex. Protease treatment of both pure and CBDCex-treated Avicel reduced the substrates' hydrolyzability, perhapsowing to proteolysis of the hydrolyzing enzyme (Celluclast) by the residual Proteinase K remaining in the substrate. Better protocols for comptete removal of CBD proteins from the substrate need to be developed to investigate the effect of CBD adsorption on cellulose digestibility.  相似文献   

10.
Twenty-nine cellulase preparations from different sources were compared interms of their abrasive activities (the ability to remove Indigo from denim) and their ability tosaccharify cellulose. Nodirectrelationship could be found between these two abilities. The preparations were divided into three groups: (1) with a high yield of reducing sugars after 24 h hydrolysis of Avicel cellulose but low abrasive activity; (2) universal cellulases that could both effectively hydrolyze cellulose and remove Indigo from denim; and (3) cellulase samples with high abrasive activity but low saccharification ability. Cellobiohydrolase (CBH) and xylanase were purified from different fungi by chromatofocusing on a Mono P column and subjected to limited proteolysis with papain yielding cellulose-binding and core (catalytic) domains. The adsorption ability and backstaining index of both CBH and xylanase core proteins were notably lower than the respective parameters for the in itial nondigested enzymes indicating that protein adsorption on the surface of cotton fibers is a crucial factor causing Indigo backstaining during the enzymatic denim washing procedure.  相似文献   

11.
12.
The systematic evaluation of the degradation of an amorphous cellulose film by a monocomponent endoglucanase (EG I) by using a quartz crystal microbalance with dissipation monitoring (QCM-D) identified several important aspects relevant to the study the kinetics of cellulose degradation by enzymes. It was demonstrated that, to properly evaluate the mechanism of action, steady state conditions in the experimental set up need to be reached. Rinsing or diluting the enzyme, as well as concentration of the enzyme, can have a pronounced effect on the hydrolysis. Quantification of the actual hydrolysis was carried out by measuring the film thickness reduction by atomic force microscopy after the enzymatic treatment. The values correlated well with the frequency data obtained by QCM-D measurement for corresponding films. This demonstrated that the evaluation of hydrolysis by QCM-D can be done quantitatively. Tuning of the initial thickness of films enabled variation of the volume of substrate available for hydrolysis which was then utilized in establishing a correlation between substrate volume and hydrolytic activity of EG I as measured by QCM-D. It was shown that, although the amount of substrate affects the absolute rate of hydrolysis, the relative rate of hydrolysis does not depend on the initial amount of substrate in steady state system. With this experimental setup it was also possible to demonstrate the impact of concentration on crowding of enzyme and subsequent hydrolysis efficiency. This effort also shows the action of EG I on a fully amorphous substrate as observed by QCM-D. The enzyme was shown to work uniformly within the whole volume of swollen film, however being unable to fully degrade the amorphous film.  相似文献   

13.
A new thermostable endoglucanase,Acidothermus cellulolyticus E1, and another bacterial endoglucanase, E5 fromThermomonospora fusca, each exhibit striking synergism with a fungal cellobiohydrolase (Trichoderma reesei CBH I) in the saccharification of microcrystalline cellulose. In neither case did the ratio of endoglucanase to exoglucanase that demonstrated maximum synergism coincide exactly with the ratio that actually released the maximum quantity of soluble sugar for a given total cellulase loading. The difference between the two ratios, after significant hydrolysis of the substrate, was considerably larger in the case ofA. cellulolyticus E1. For both endoglucanase pairings with CBH I, the offset between the ratio for maximum synergism and the ratio for maximal soluble sugar production was found to be a function of digestion time.  相似文献   

14.
We prepared two cellulose hydrates, Na-cellulose IV and cellulose II hydrate, along with their respective anhydrous forms, cellulose II and II′, from microcrystalline cellulose. X-ray diffractometry analysis showed that the structure of the hydrophobic stacking sheet was conserved in the samples, but the distance between the sheets was in the order: cellulose II hydrate > Na-cellulose IV > cellulose II and II′. The hydrates exhibited an expanded structure compared with the anhydrous form from the incorporation of hydrate water, and cellulose II hydrate contained more hydrate water than Na-cellulose IV. Enzymatic hydrolysis of the samples was carried out at 37 °C using solutions comprising a mixture of cellulase and β-glucosidase. The hydrates were hydrolyzed more efficiently than the anhydrous forms, and cellulose II hydrate showed a more efficient hydrolysis than Na-cellulose IV. This result also agrees well with the enzymatic adsorption properties of each sample, where the samples that adsorbed the greater amount of enzyme showed a higher degradability. The results obtained in this study provide useful knowledge on controlling the biodegradability of cellulose by converting its structure.  相似文献   

15.
A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial enzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBD-fluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.  相似文献   

16.
Cellulose-binding domains (CBD) are modular peptides, present in many glycanases, which anchor these enzymes to the substrate. In this work, the effect of CBD adsorption on the surface properties of a model cellulose, Whatman CF11, was studied. The methods applied include inverse gas chromatography (IGC), ESCA, X-ray diffraction, and scanning electron microscopy (SEM). The CBD partition affinity (0.85 L/g) was calculated from adsorption isotherms. However, true adsorption equilibrium does not exist, since CBDs are apparently irreversibly adsorbed to the fibers. Both IGC and ESCA showed that fibers with adsorbed CBD have a lower acidic character and also a slightly higher affinity toward aliphatic molecules. This may however be a consequence of an increased surface area, a hypothesis that is supported by microscopic observations. The crystallinity index was not affected by CBD treatment.  相似文献   

17.
In this work, we examined the role of a non-ionic surfactant, Tween 20, on enzymatic hydrolysis of lignocelluloses. Delignified lignocelluloses (pine wood chip) were used as model substrates. Effects of Tween 20 on adsorption/desorption onto/from lignocelluloses with and without hydrolysis were evaluated respectively. Tween 20 lowered the non-biospecific adsorption of β-glucosidase and enhanced the bio-specific adsorption of cellulase. Tween 20 did not affect the liquid phase reaction (cellobiose hydrolysis). However, for the solid surface reaction (cellulose hydrolysis), cellulose conversion for 72 hrs was increased 9–21% and 1–8.5% for samples with high lignin contents (PI) and low lignin contents (PIII) by injection of Tween 20 (0.024–0.24 mM), respectively. Moreover, Tween 20 increased the cellulose conversion rate substantially. It is suggested that the increase of cellulase amount adsorbed due to the increase of effective cellulose surface by Tween 20 contribute to the enhancement of cellulose conversion.  相似文献   

18.
It is commonly observed that the rate of enzymatic hydrolysis of solid cellulose substrates declines markedly with time. In this work the mechanism behind the rate reduction was investigated using two dominant cellulases of Trichoderma reesei: exoglucanase Cel7A (formerly known as CBHI) and endoglucanase Cel7B (formerly EGI). Hydrolysis of steam-pretreated spruce (SPS) was performed with Cel7A and Cel7B alone, and in reconstituted mixtures. Throughout the 48-h hydrolysis, soluble products, hydrolysis rates, and enzyme adsorption to the substrate were measured. The hydrolysis rate for both enzymes decreases rapidly with hydrolysis time. Both enzymes adsorbed rapidly to the substrate during hydrolysis. Cel7A and Cel7B cooperate synergistically, and synergism was approximately constant during the SPS hydrolysis. Thermal instability of the enzymes and product inhibition was not the main cause of reduced hydrolysis rates. Adding fresh substrate to substrate previously hydrolyzed for 24 h with Cel7A slightly increased the hydrolysis of SPS; however, the rate increased even more by adding fresh Cel7A. This suggests that enzymes become inactivated while adsorbed to the substrate and that unproductive binding is the main cause of hydrolysis rate reduction. The strongest increase in hydrolysis rate was achieved by adding Cel7B. An improved model is proposed that extends the standard endo-exo synergy model and explains the rapid decrease in hydrolysis rate. It appears that the processive action of Cel7A becomes hindered by obstacles in the lignocellulose substrate. Obstacles created by disordered cellulose chains can be removed by the endo activity of Cel7B, which explains some of the observed synergism between Cel7A and Cel7B. The improved model is supported by adsorption studies during hydrolysis.  相似文献   

19.
During the pretreatment of lignocellulosic materials, the dissolved mannan would re-adsorb on cellulose, and then inhibited the cellulose hydrolysis by cellulases. However, the adsorption of mannan on cellulose and hydrolyzability of mannan adsorbed on cellulose were not so clear. In this work, the adsorption behavior of mannans on cellulose and the hydrolysis of adsorbed mannan by mannanase were investigated. Adsorption of 1, 4-β-D-mannan (mannan), Konjac glucomannan (GM), and Carob galactomannan (GalM) on Avicel and corn stover (CS) was increased with mannan loading. The adsorbed amount of mannan (94.4 mg/g Avicel and 85.1 mg/g CS) on cellulosic substrates at the mannan concentration of 5 mg/mL was significantly higher (p < 0.05) than that of GM (65.7 mg/g Avicel and 63.7 mg/g CS) and GalM (44.3 mg/g Avicel and 48.7 mg/g CS). Furthermore, the NMR spectra and molecular weight analysis showed that mannan with less side groups and low molecular weight might increase the adsorption. Mannan, GM, and GalM adsorbed on Avicel and CS, which was used as Avicel/CS -mannan/GM/GalM complex, could be hydrolyzed by mannanase, and the hydrolyzability of Avicel-mannan/GalM complexes was stronger than that of Avicel-GM complex. Similarly, the reducing sugars increased by 23.2 and 54.2 % for Avicel-mannan and Avicel-GalM complexes after 48 h hydrolysis by cellulase and mannanase, respectively. The results suggested that the addition of mannanase could hydrolyze the mannan adsorbed on cellulose and potentially improved hydrolysis efficiency of cellulose in lignocelluloses. Additionally, the mannanase supplementation could be extended to the removal of mannan on pulp by mannanase and finally affecting the dissolving pulps and paper quality.  相似文献   

20.
We developed a novel and practical assessment technique for endoglucanase (EG) activity by measuring the degree of polymerization (DP) of cellulose from Eucalyptus globulus. This evaluation method demonstrated that EG II from Trichoderma reesei had higher endoglucanase activity than EG I, which has not been detected in conventional experiments using carboxymethyl cellulose as a model substrate. In addition, a high-throughput protocol for DP measurement was developed by using near-infrared spectroscopy combined with a multivariate analysis. Interpreting the regression coefficient, a reciprocal correlation was observed between the relative crystallinity of the cellulosic residue after enzymatic hydrolysis and the DP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号