首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Balanced carrier transport is observed in acceptor-acceptor (A-A′) type polymer for ambipolar organic thin-film transistors B (OTFTs). It is found that the incorporation of two electron-accepting moieties (BTz and IIG) into a polymer main chain to form A-A′ polymer PIIG-BTz could lower highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels and facilitate good molecular stacking of the polymer. Ambipolar transistor behaviour for PIIG-BTz, with the balanced hole and electron mobilities of 0.030 and 0.022 cm2 V-1 s-1 was observed in OTFT devices, respectively. The study in this work reveals that the utilization of acceptor-acceptor (A-A′) structure in polymer main chain can be a feasible strategy to develop ambipolar polymer semiconductors.  相似文献   

2.
Ultrahigh mobility in polymer field-effect transistors by design   总被引:1,自引:0,他引:1  
In this article, the design paradigm involving molecular weight, alkyl substituents, and donor-acceptor interaction for the poly[2,6-(4,4-bis-alkyl-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (cyclopentadithiophene-benzothiadiazole) donor-acceptor copolymer (CDT-BTZ) toward field-effect transistors (FETs) with ultrahigh mobilities is presented and discussed. It is shown that the molecular weight plays a key role in improving hole mobilities, reaching an exceptionally high value of up to 3.3 cm(2) V(-1) s(-1). Possible explanations for this observation is highlighted in conjunction with thin film morphology and crystallinity. Hereby, it is found that the former does not change, whereas, at the same time, crystallinity improved with ever growing molecular weight. Furthermore, other important structural design factors such as alkyl chain substituents and donor-acceptor interaction between the polymer backbones potentially govern intermolecular stacking distances crucial for charge transport and hence for device performance. In this aspect, for the first time we attempt to shed light onto donor-acceptor interactions between neighboring polymer chains with the help of solid state nuclear magnetic resonance (NMR). On the basis of our results, polymer design principles are inferred that might be of relevance for prospective semiconductors exhibiting hole mobilities even exceeding 3 cm(2) V(-1) s(-1).  相似文献   

3.
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.  相似文献   

4.
This communication demonstrates a method of transferring unreacted low molecular weight (LMW) siloxane oligomers from freshly prepared "dry" PDMS stamps for patterning organic semiconductors and conducting polymers into functional devices via selective wetting. The semiconductors were patterned onto the modified surfaces via dip-coating with well-resolved feature sizes as small as 1 mum. Functional transistor arrays exhibited field-effect mobilities as high as 0.07 cm2/Vs. The proposed printing method eliminates the need to ink SAMs for fabricating patterns and results in a simple, fast, and highly reproducible method of patterning organic semiconductors from solution. The method herein also produced a flexible transistor composed of patterned PEDOT source-drain electrodes.  相似文献   

5.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   

6.
This digest aims to provide organic chemists with an overview of recent progress on n-type organic semiconductors for application in organic thin film transistors (OTFTs) with an emphasis on molecular design. Herein, we survey n-type organic semiconductors with field effect mobility of 1 cm2/Vs or higher in OTFTs after a brief introduction to the structure and operation of OTFTs and discussion of two key factors (frontier molecular orbitals and molecular packing) of organic semiconductors. On the basis of this survey, we finally reach conclusions on the current status of n-type organic semiconductors for OTFTs and provide an outlook for molecular design.  相似文献   

7.
We report the fabrication and extensive characterization of solid polymer electrolyte-gated organic field-effect transistors (PEG-FETs) in which a polyethylene oxide (PEO) film containing a dissolved Li salt is used to modulate the hole conductivity of a polymer semiconductor. The large capacitance (approximately 10 microF/cm2) of the solution-processed polymer electrolyte gate dielectric facilitates polymer semiconductor conductivities on the order of 103 S/cm at low gate voltages (<3 V). In PEG-FETs based on regioregular poly(3-hexylthiophene), gate-induced hole densities were 2 x 10(14) charges/cm2 with mobilities >3 cm2/V.s. PEG-FETs fabricated with gate electrodes either aligned or intentionally nonaligned to the channel exhibited dramatically different electrical behavior when tested in vacuum or in air. Large differences in ionic diffusivity can explain the dominance of either electrostatic charging (in vacuum) or bulk electrochemical doping (in air) as the device operational mechanism. The use of a larger anion in the polymer electrolyte, bis(trifluoromethanesulfonyl)imide (TFSI-), yielded transistors that showed clear current saturation and square law behavior in the output characteristics, which also points to electrostatic (field-effect) charging. In addition, negative transconductances were observed using the PEO/LiTFSI electrolyte for all three polymer semiconductors at gate voltages larger than -3 V. Bias stress measurements performed with PEO/LiTFSI-gated bottom contact PEG-FETs showed that polymer semiconductors can sustain high ON currents for greater than 10 min without large losses in conductance. Collectively, the results indicate that PEG-FETs may serve as useful devices for high-current/low-voltage applications and as testbeds for probing electrical transport in polymer semiconductors at high charge density.  相似文献   

8.
The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies.  相似文献   

9.
The development of new organic semiconductors with improved electrical performance and enhanced environmental stability is the focus of considerable research activity. This paper presents the design, synthesis, optical and electrochemical characterization, crystal packing, modeling and thin film morphology, and organic thin film field effect transistor (OTFT) device data analysis for a novel 2,6-bis[2-(4-pentylphenyl)vinyl]anthracene (DPPVAnt) organic semiconductor. We observed a hole mobility of up to 1.28 cm2/V.s and on/off current ratios greater than 107 for OTFTs fabricated using DPPVAnt as an active semiconductor layer. The mobility value is comparable to that of the current best p-type semiconductor pentacene-based device performance. In addition, we found a very interesting relationship between the charge mobility and molecule crystal packing in addition to the thin film orientation and morphology of the semiconductor as determined from single-crystal molecule packing study, thin film X-ray diffraction, and AFM measurements. The high performance of the semiconductor ranks among the best performing p-type organic semiconductors reported so far and will be a very good candidate for applications in organic electronic devices.  相似文献   

10.
A new diketopyrrolopyrrole derivative 1 exhibits excellent hole mobilities of 0.7 cm(2) V(-1) s(-1) and a current on/off ratio of 10(6) under ambient conditions in bottom-gate, top-contact organic thin film transistors (OTFTs) fabricated by vacuum deposition.  相似文献   

11.
Over the past decade, isoindigo has become a widely used electron‐deficient subunit in donor‐acceptor organic semiconductors, and these isoindigo‐based materials have been widely used in both organic photovoltaic (OPV) devices and organic field effect transistors (OFETs). Shortly after the development of isoindigo‐based semiconductors, researchers began to modify the isoindigo structure in order to change the optoelectronic properties of the resulting materials. This led to the development of many new isoindigo‐inspired compounds; since 2012, the Kelly Research Group has synthesized a number of these isoindigo analogues and produced a variety of new donor‐acceptor semiconductors. In this Personal Account, recent progress in the field is reviewed. We describe how the field has evolved from relatively simple donor‐acceptor small molecules to structurally complex, highly planarized polymer systems. The relevance of these materials in OPV and OFET applications is highlighted, with particular emphasis on structure‐property relationships.  相似文献   

12.
Two conjugated polymers, IIDDT and IIDT, based on an isoindigo core were developed for organic field-effect transisitors. Investigation of their field-effect performance indicated that IIDDT exhibited air-stable mobility up to 0.79 cm(2) V(-1) s(-1), which is quite high among polymer FET materials. The facile preparation and high mobility of such polymers make isoindigo-based polymers very promising for application as solution-processable organic semiconductors for optoelectronic devices.  相似文献   

13.
有机聚合物半导体材料与晶体管器件是融合了化学、材料、半导体以及微电子等学科的前沿交叉研究方向.聚合物半导体材料分子是该领域研究的重要内容,其中双极性聚合物分子半导体材料,兼具了电子和空穴的双重载流子输运能力而受到学术界的广泛关注.本文总结了双极性聚合物半导体材料与器件的研究进展,重点介绍了我们在D-A型双极性聚合物分子半导体材料设计、加工技术与器件制备以及功能应用方面的研究工作,并论述了双极性聚合物分子半导体材料与器件研究过程中存在的科学问题及发展方向.  相似文献   

14.
《化学:亚洲杂志》2018,13(18):2587-2600
The fusion of heteroaromatic rings into ladder‐type heteroarenes can stabilize frontier molecular orbitals and lead to improved physicochemical properties that are beneficial for applications in various optoelectronic devices. Thus, ladder‐type heteroarenes, which feature highly planar backbones and well‐delocalized π conjugation, have recently emerged as a promising type of organic semiconductor with excellent device performance in organic photovoltaics (OPVs) and organic field‐effect transistors (OFETs). In this Focus Review, we summarize the recent advances in ladder‐type heteroarene‐based organic semiconductors, such as hole‐ and electron‐transporting molecular semiconductors, and fully ladder‐type conjugated polymers towards their applications in OPVs and OFETs. The recent use of ladder‐type small‐molecule acceptor materials has strikingly boosted the power conversion efficiency of fullerene‐free solar cells, and selected examples of the latest developments in ladder‐type fused‐ring electron acceptor materials are also elaborated.  相似文献   

15.
Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.  相似文献   

16.
The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.  相似文献   

17.
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V−1 s−1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.  相似文献   

18.
Recent research in organic photovoltaic (OPV) is largely focused on developing low cost OPV materials such as graphene. However, graphene sheets (GSs) blended conjugated polymers are known to show inferior OPV characteristics as compared to fullerene adduct blended with conjugated polymer. Here, we demonstrate that graphene quantum dots blended with regioregular poly(3-hexylthiophene-2,5-diyl) or poly(2-methoxy-5-(2-ethylhexyloxy)-1,4phenylenevinylene) polymer results in a significant improvement in the OPV characteristics as compared to GSs blended conjugated polymers. This work has implications for inexpensive and efficient solar cells as well as organic light emitting diodes.  相似文献   

19.
Conjugated polymers represent a promising class of organic semiconductors with potential applications in a variety of molecular devices. Poly(3-alkylthiophene)s, in particular, are garnering interest due to their large charge carrier mobility and band gap in the visible region of the spectrum. Defects play a pivotal role in determining the performance of polymer electronics, and yet the function of specific types of defects is still largely unknown. Density functional theory calculations of alkyl-substituted oligothiophenes are used to isolate the effect of static inter-ring torsion defects on key parameters such as electronic coupling between rings and band gap. Results have potential implications both for the fundamental understanding of intramolecular charge transport and for improving processing in organic devices.  相似文献   

20.
Synthesis of n‐type organic semiconductors with high electron mobilities, good environmental stability, and good processability is an urgent task in current organic electronics. This is because most of π‐conjugated materials are p‐type and prefer to transport positive hole carriers. In this article, a series of new dicarboxylic imide‐substituted poly(p‐phenylene vinylenes) (DI‐PPVs) were first synthesized. They exhibited a high electron affinity of 3.60 eV and thus are able to transport electrons. The polymers showed tunable solubility in common organic solvents and high chemical and thermal stability. They remain rigidity of the PPV backbone, and strong interchain π‐stacking was observed in thin films by X‐ray diffraction measurement. All these suggested that these polymers could serve as good candidates as n‐type semiconductors in organic electronic devices such as n‐channel field‐effect transistors and all polymer‐based solar cells. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 186–194, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号