首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new triterpene glycoside from sea cucumber Holothuria leucospilota   总被引:4,自引:0,他引:4  
A new triterpene glycoside, leucospilotaside A, along with a known saponin, isolated from sea cucumber Holothuria leucospilota, and its structure was elucidated as 3β-O-[4-O-sodiumsulfate-β-D-quinovopyranosyl-(1→2)-β-D-xylopyranosyl]-holosta-22-ketone-9-en-17α,25α-diol (1) by extensive spectroscopic analysis and chemical methods. Leucospilotaside A (1) has a ketone carbonyl group (22) in the aglycon side chain.  相似文献   

2.
The aim of this study was to verify the antitumor role of the β-d-glucopyranosyl-(1→2)-O-[β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranosyl-(1→4)-d-galactopyranosyl (lycotetraosyl) moiety present in steroidal glycosides from Solanaceous plants. We explored a new chemical trans-glycosylation method using an endoglycosidase called tomatinase that is produced by the tomato pathogen, Fusarium oxysporum f. sp. lycopersici. The lycotetraose, which was prepared by enzymatic hydrolysis of α-tomatine with tomatinase, was converted to glycosyl donors such as trichloroacetimidate, fluoride, and thioglycoside. All obtained glycosyl donors were glycosylated with cholesterol to form α-lycotetraosyl cholesterols in a stereoselective manner. The obtained lycotetraosyl derivatives together with typical natural lycotetraosyl glycosides were examined for their antiproliferative activity.  相似文献   

3.
The two major steroidal saponins from the roots of Asparagus racemosus were isolated by RP-HPLC and their structure determined by extensive NMR studies. Their structures did not match those reported previously for shatavarins I and IV and were found to be 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-26-O-(β-d-glucopyranosyl)-(25S)-5β-furostan-3β,22α,26-triol and 3-O-{[β-d-glucopyranosyl(1→2)][α-l-rhamnopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol.  相似文献   

4.
Methanolic extracts of the pods of Bobgunnia madagascariensis (Leguminosae) yielded four pentaglycosylated flavonoids, including the 3-O-α-l-rhamnopyranosyl(1→3)-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranosides of 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-benzopyran-4-one (kaempferol) and 3,5,7-trihydroxy-2-(3,4-dihydroxyphenyl)-4H-benzopyran-4-one (quercetin), which were characterized by a novel O-linked branched tetrasaccharide. Spectroscopic and chemical methods were used to determine the structures of the latter, which co-occurred with the corresponding β-d-galactopyranosyl isomers, and two saponins. Conformational isomerism of quercetin 3-O-α-l-rhamnopyranosyl(1→3)-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-β-d-glucopyranoside-7-O-α-l-rhamnopyranoside was detected in solution by NMR, a phenomenon previously associated only with C-glycosylflavonoids.  相似文献   

5.
Three new triterpenoidal glucosides, justiciosides E, F and G, were isolated from the aerial portion of Justicia betonica. Their structures were established through chemical and spectroscopic analyses, and showed an unusual A-nor-B-homo oleanan-12-ene skeleton type for the aglycone moiety as A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, and 11α-methoxy-A-nor-B-homo-oleanan-10,12-diene-3β,11α,28-triol 28-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside, respectively.  相似文献   

6.
A high yielding method for 1,2-cis-β-D-mannosylation by intra-molecular aglycon delivery (IAD) through p-methoxy benzyl ether/acetal exchange and phenylsulfoxide donor is reported, along with its application in iterative assembly of antigenic (1 → 2)-β-pentamannoside domain of phospholipomannan (PLM) of fungal pathogen Candida albicans.  相似文献   

7.
A general method has been developed for the synthesis of oligosaccharides consisting of (1→2)- and (1→3)-linked rhamnans with GlcNAc side chains. As examples, highly effective and convergent syntheses of two decasaccharides in the O polysaccharide moiety of the lipopolysaccharide of the phytopathogenic bacterium Pseudomonas syringae pv. ribicola NCPPB 1010 were achieved. The two decasaccharides consist of O polysaccharide repeating units I+II and II+I, respectively. Allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside, allyl 2-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranoside, 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl trichloroacetimidate, and 3-O-acetyl-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate, which were obtained by highly regioselective 3-O-acylations, were used as the key synthons to obtain the required α-(1→2)- and α-(1→3)-linked rhamnoocta saccharide acceptors with 33- and 37-free hydroxyl groups. Therefore, several disaccharides were synthesized, from which tetrasaccharides and hexasaccharides were then synthesized. Coupling of the hexasaccharide donors with the disaccharide acceptors gave the octasaccharide acceptors. Finally, the coupling of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl trichloroacetimidate with the octasaccharide acceptors, followed by deprotection, afforded the two target decasaccharides. A repeating hexasaccharide unit of the cell wall polysaccharide of β-hemolytic Streptococci Group A was also synthesized in a similar way.  相似文献   

8.
Bing Feng  Li-ping Kang 《Tetrahedron》2005,61(49):11758-11763
The microbiological transformation of polyphyllin I (compound I), polyphyllin III (compound II), polyphyllin V (compound III) and polyphyllin VI (compound IV) by Curvularia lunata into their corresponding subsaponins, for example, diosgenin-3-O-α-l-arabinofuranosyl (1→4)-β-d-glucopyranoside (compound V), diosgenin-3-O-α-l-rhamnopyranosyl (1→4)-β-d-glucopyranoside (compound VI), diosgenin-3-O-β-d-glucopyranoside (compound VII) and pennogenin-3-O-β-d-glucopyranoside (compound VIII), were studied in this paper. Curvularia lunata is able to hydrolyze terminal rhamnosyls that are linked by 1→2 C- bond to sugar residues of steroidal saponins at C-3 position with high activity and regioselectivity.  相似文献   

9.
A new steroidal saponin, shatavarin V, (3-O-{[α-l-rhamnopyranosyl(1→2)][β-d-glucopyranosyl(1→4)]-β-d-glucopyranosyl}-(25S)-5β-spirostan-3β-ol), was isolated from the roots of Asparagus racemosus by RP-HPLC, and its structure determined by 1D and 2D NMR studies. This data permits clarification of the structures reported for several known saponins: asparinins A and B; asparosides A and B; curillin H; curillosides G and H and shavatarins I and IV.  相似文献   

10.
Although the medicinal plant and food Nigella glandulifera Freyn has been researched for decades, isobenzofuranones have never been isolated before. Two isobenzofuranone derivatives and two saponins were successfully separated and purified from seeds of N. glandulifera Freyn by high-speed counter-current chromatography (HSCCC) with the optimized two-phase solvent system, n-hexane-ethyl acetate–methanol–water (7:3:5:5, v/v). Salfredin B11 (22.1 mg, HPLC purity 95.3%), 5, 7-dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one (18.9 mg, HPLC purity 97.3%) and crude sample 2 (555 mg) were separated from 600 mg of ethyl acetate extract of N. glandulifera Freyn. Following a cleaning-up step by chromatography on Sephadex LH-20, hederagenin (12 mg) and 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin (45 mg) were separated from sample 2. All of the fractions before peak II were collected and subjected to a Sephadex LH-20 column and eluted by methanol, two of triterpene saponins (12 mg of hederagenin and 45 mg of 3-O-[β-d-xylopyranosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-arabinopyranosyl]-hederagenin) were isolated. The structures of peak fractions were identified by IR, electron ionization MS, 1H NMR and 13C NMR. 5, 7-Dihydroxy-6-(3-methybut-2-enyl) isobenzofuran-1(3H)-one was isolated for the first time from higher plant and salfredin B11 was isolated for the first time in this plant.  相似文献   

11.
12.
The pigment, tecophilin, in blue flowers of Tecophilaea cyanocrocus was isolated and the structure was determined to be 3-O-(6-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-7-O-(6-O-(4-O-(2-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-6-O-(4-O-β-d-glucopyranosyl-(E)-caffeoyl)-β-d-glucopyranosyl)-(E)-caffeoyl)-β-d-glucopyranosyl)delphinidin. The reproduction experiment of the same color as petals according to the results of chemical analysis and measurement of vacuolar pH of blue cells clarified that the blue color solely develops by tecophilin without interaction of metal ions nor co-pigments. 1H NMR analysis and CD spectrum indicate the co-existence of clockwise intermolecular self-association of the delphinidin nuclei and intramolecular π–π stacking between the chromophore and caffeoyl residues to derive bathochromic shift of the absorption spectrum and stabilize the color by preventing hydration reaction.  相似文献   

13.
Susanne Wille 《Tetrahedron》2006,62(14):3301-3308
The halogenated 1H-1,2,4-triazole glycosides 6-10 were synthesized by BF3-activated glycosylation of 3(5)-chloro-1,2,4-triazole (2), 3,5-dichloro-1,2,4-triazole (3), 3,5-dibromo-1,2,4-triazole (4), and 3(5)-bromo-5(3)-chloro-1,2,4-triazole (5) with 1,2,3,4-tetra-O-pivaloyl-β-d-xylopyranose (1). The β-anomeric major products 3-chloro-1-(2,3,4-tri-O-pivaloyl-β-d-xylopyranosyl)-1,2,4-triazole (6β), 3,5-dichloro-1-(2,3,4-tri-O-pivaloyl-β-d-xylopyranosyl)-1,2,4-triazole (7β), and 3,5-dibromo-1-(2,3,4-tri-O-pivaloyl-β-d-xylopyranosyl)-1,2,4-triazole (8β) were used as starting materials for transition metal catalyzed C-C-coupling reactions. Arylations of the triazole ring of 7β, and 8β were successful in 5-position with phenylboronic acid, 4-vinylphenylboronic acid, and 4-methoxyphenylboronic acid, respectively, under Suzuki cross-coupling conditions (products 11-17). Moreover, a Cu-catalyzed perfluoroalkylation of 8β is reported with 1-iodo-perfluorohexane yielding 3-perfluorohexyl-1-(2,3,4-tri-O-pivaloyl-β-d-xylopyranosyl)-1,2,4-triazole (18). Compound 18 was depivaloylated to the trihydroxy derivative 19. The copper-mediated reaction of 8β with Rupert's reagent gave the bis(3-bromo-1-(2,3,4-tri-O-pivaloyl-β-d-xylopyranosyl)-1,2,4-triazol-5-yl) (20).  相似文献   

14.
Eight new compounds including 9′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy) phenyl]nonanoic acid (1), 9′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl] nonanoic acid (2), 11′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy)phenyl]undecanoic acid (3), 11′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl]undecanoic acid (4), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (5), 8-(4′-O-methyl-α-ribopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (6), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-2-methyquinoline (7), and 8-(4′-O-methyl-α-ribopyranosyloxy)-2-methylquinoline (8) were isolated from Actinomadura sp. BCC27169. The chemical structures of these compounds were determined based on NMR and high-resolution mass spectroscopy. The absolute configurations of these monosaccharides were revealed by the hydrolysis of compounds 7 and 8. Compounds 3 and 8 exhibited antitubercular activity at MIC 50 μg/mL. Only compound 3 showed cytotoxicity against KB cell at IC50 18.63 μg/mL, while other isolated compounds were inactive at tested maximum concentration (50 μg/mL).  相似文献   

15.
Dioscorea nipponica and the preparations made from it have been used for long to prevent and treat coronary heart disease in traditional Chinese medicine. A group of steroidal saponins present in the plant are believed to be the active ingredients. It has been a challenge to study the individual saponins separately due to the similarities in their chemical and physical properties. In this work, human serum albumin (HSA) functionalized magnetic nanoparticles (MNPs) were used to isolate and identify saponin ligands that bind to HSA from D. nipponica extract. Electrospray ionization mass spectrometry (ESI-MS) was used for compound identification and semi-quantification. Three saponins, i.e. dioscin, gracillin, and pseudo-protodioscin showed affinity to HSA-MNPs and thus isolated effectively from the extract. The other two saponins detected in the extract (i.e. protodioscin and 26-O-β-d-glucopyranosyl-3β,20α,26-triol-25(R)-Δ5,22-dienofurostan-3-O-α-l-rhamnopyranosyl (1→2)-[α-l-rhamnopyranosyl (1 → 4)]-β-d-glucopyranoside) exhibited no affinity at all. Among the three saponins fished out, dioscin bound to HSA much stronger than gracillin and pseudo-protodioscin did. The results indicated that affinity interaction between HSA immobilized on MNPs and small molecule compounds were highly dependent on chemical structures and, potentially, medicinal usefulness. The present work demonstrates a facile and effective way to isolate and identify ligands of receptors from medicinal plants.  相似文献   

16.
NIS/TfOH mediated glycosidation of methyl 3,4,6-tri-O-benzyl-α-d-mannopyranoside with phenyl 2-O-acetyl-3,4,6-tri-O-benzyl-1-thio-α-d-mannopyranoside furnished the corresponding disaccharide derivative in excellent yield and α-selectivity. Zémplen deacetylation of the same followed by reaction with BSP/Tf2O-preactivated phenyl 4,6-O-benzylidene-2,3-di-O-benzyl-1-thio-α-d-mannopyranoside generated methyl 4,6-O-benzylidene-2,3-di-O-benzyl-β-d-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-d-mannopyranosyl-(1→2)-3,4,6-tri-O-benzyl-α-d-mannopyranoside in very good yield and excellent β-selectivity. Pd/C catalyzed hydrogenation of the latter finally afforded the repeating trisaccharide of Escherichia coli 8 O-antigen as its methyl glycoside.  相似文献   

17.
Aqueous methanol extracts of the leaves of Mildbraediodendron excelsum yielded a novel flavonol glycoside characterized by an O-linked branched tetrasaccharide. The structure of the compound was determined by spectroscopic methods to be kaempferol 3-O-α-l-rhamnopyranosyl(1→3)-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-β-d-galactopyranoside. This previously unrecorded natural product was the major phenolic component of leaf material obtained both from a living specimen of the plant and a historic collection made in the field in 1928.  相似文献   

18.
A concise method to construct a unique 2,6-branched trisaccharide was established by regioselective glycosylation of three free hydroxyl groups on a 3-O-protected glucose moiety, and successfully used in the synthesis of quercetin 3-O-β-d-apiofuranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→6)]-β-d-glucopyranoside, a flavonol O-glycoside isolated from glandless cotton seeds which showed notable antidepressant activities.  相似文献   

19.
Four novel isomers of norlignan glycoside were isolated from Cephalotaxus oliveri Mast.. Their structures were elucidated as 3S-4″-O-β-d-glucopyranosylnyasol 1, 3S-4′-O-β-d-glucopyranosylnyasol 2, 3S-4″-O-β-d-glucopyranosylhinokiresinol 3, 3S-4′-O-β-d-glucopyranosylhinokiresinol 4 by extensive spectroscopic methods including 1D and 2D NMR experiments (1H, 13C, DEPT, 1H–1H COSY, HSQC, HMBC, ROESY) along with HR-ESIMS and comparison to literature data. Their absolute configurations were elucidated through CD spectra coupled with the quantum chemical CD calculations.  相似文献   

20.
Tzy-Ming Lu 《Tetrahedron letters》2007,48(31):5415-5419
Two novel carbonic acid esters conjugated with oligomeric phenyl glycosides have been isolated and characterized from the wood of Rhamnus nakaharai. The structures are characterized as 5,7-dihydroxyphthalide 5-O-β-[6-O-{3″-methoxy-4″-O-β-[6?-O-(4?-O-carboxy-3?,5?-dimethoxy)phenyl]glucopyranosyl}phenyl]glucopyranoside (1) and 6-O-{3′-methoxy-4′-O-β-[6″-O-(3?-mercapto-5?-methoxy-4?-O-methylcarboxy)phenyl]glucopyranosyl}phenyl β-glucopyranose (2), namely, rhamnakoside A (1) and B (2), all by NMR and other spectral methods, respectively. They could be a novel case of phase II detoxification products and biogenetic diversity in plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号