首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A hydrophobic ionic liquid modified thermoresponsive molecularly imprinted monolith was synthesized using N‐isopropylacrylamide as a thermoresponsive monomer and a long‐chain hydrophobic ionic liquid as an auxiliary modification monomer. The ionic‐liquid‐modified thermoresponsive molecularly imprinted polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. When the column temperature was 50°C, the synthesized monolithic column was successfully applied to the selective separation of homologue tanshinones within 7 min and eluted only by water (mobile phase) (theoretical plates more than 1.00 × 105 per meter). The negative Gibbs free energy (≤–2.37) values showed that the transfer of the tanshinones from the mobile phase to the stationary phase on this monolithic column was a thermodynamically spontaneous process. Good linearity of the five tanshinones by thermoresponsive monolith was obtained in the range of 0.100–25.0 μg/mL. The limit of detection (S/N = 3) and limit of quantitation (S/N = 10) were less than 0.0390 and 0.0630 μg/mL, respectively, with a relative standard deviation of <4.8%. In this proposed thermoresponsive chromatography method, the separation of homologue analytes can be achieved by changing the column temperature, and the use of water as the mobile phase would decrease the economic cost and organic pollution.  相似文献   

2.
A novel porous polymeric monolithic column based on poly(high internal phase emulsion) methacrylate monolith was prepared and applied to fast separation of proteins. The block copolymer chemistry of high internal phase emulsions was used in the experiment. These unique properties, together with high porosity, good mechanical property, chemical modification of the surface make themselves superior in monolithic medium applications. Morphology of the monolithic material was studied by scanning electron microscopy. The stability of the emulsion and the load of hydroxyl groups–the active group of the monolithic column were investigated. Additionally, the capabilities of separation of this column in conjunction with high performance liquid chromatography (HPLC) were investigated. Immunoglobulin was separated from human plasma and chicken egg yolk with high resolution on the hydrophobic interaction chromatographic column in a short time. The effects of pH and concentration of mobile phase (buffer) on the elution of immunoglobulin were investigated. Moreover, fast separation of a two mode protein mixture (α‐amylase and lysozyme) on the monolith was achieved within 1.5 min at a velocity of 1445 cm·h?1. As a result, good separation was achieved, and stable low back pressure drop was ensured at high throughput elution with an even longer column.  相似文献   

3.
以一种新型的材料聚乙烯基酯树脂(甲基丙烯酸间苯二酚二缩甘油酯)同时为单体和交联剂,以偶氮二异丁基腈(AIBN)为引发剂,以十六醇为制孔剂制备所得的聚合物整体柱,经化学修饰后,考察其作为HPLC的固定相对免疫球蛋白等进行分离,结果表明分离效果良好,适合作为HPLC的固定相。  相似文献   

4.
A monolithic molecularly imprinted polymer (monolithic MIP) for sulfamethoxazole (SMO) was prepared by in situ polymerization method as the HPLC stationary phase. By optimizing the polymerization conditions, the monolithic MIP showed highly specific recognition for the template SMO over its three structurally related analogs. As shown by SEM and the pore size distribution profile, the resultant MIP monolith showed a main pore diameter of 594 nm and a large specific surface area of 124 m2 g−1, this allowed the mobile phase to flow through the column with low backpressure. Furthermore, the recognition abilities of the monolithic MIP in aqueous and organic media were studied. The results exhibited that the monolithic MIP possessed excellent recognition ability in aqueous media. Hydrophobic interactions, in addition to shape recognition, were the dominant effect for recognition in the mobile phase with high water content. Moreover, the binding sites and the dissociation constant were also determined by frontal chromatography as 122 μmol g−1 and 1.88 × 10−5 mol L−1, respectively, which demonstrated that the obtained SMO-MIP monolith had a high binding capacity and strong affinity ability to the template molecule. Furthermore, the resultant SMO-MIP monolith was used as HPLC column directly to determine the SMO contents in three kinds of pharmaceutical tablets with the optimized aqueous mobile phase.  相似文献   

5.
Melamine (MAM) was employed as a pseudo template to prepare a molecularly imprinted polymer monolithic column which presents the ability of selective recognition to Triamterene (TAT), whose structure was similar to that of MAM. Methacrylic acid and ethylene glycol dimethacrylate were applied as functional monomer and cross‐linker, respectively, during the in situ polymerization process. Chromatographic behaviors were evaluated, the results indicated that the molecularly imprinted polymer monolithic column possessed excellent affinity and selectivity for TAT, and the imprinting factor was high up to 3.99 when 7:3 of ACN/water v/v was used as mobile phase. In addition, the dissociation constant and the binding sites were also determined by frontal chromatography as 134.31 μmol/L and 132.28 μmol/g, respectively, which demonstrated that the obtained molecularly imprinted polymer monolith had a high binding capacity and strong affinity ability to TAT. Furthermore, biological samples could be directly injected into the column and TAT was enriched with the optimized mobile phase. These assays gave recovery values higher than 91.60% with RSD values that were always less than 3.5%. The molecularly imprinted monolithic column greatly simplified experiment procedure and can be applied to preconcentration, purification, and analysis of TAT in biological samples.  相似文献   

6.
以4-氨基吡啶(4-AP)为印迹分子,热引发原位合成了分子印迹聚合物毛细管整体柱,聚合物通过共价键和石英毛细管内壁相连,制备方法简单、快捷.在最佳电色谱条件下,4-AP和2-AP之间的分离度在印迹聚合物柱上高达2.5,而在不含印迹的对照柱上仅为0.35.通过研究流动相条件对4-AP,2-AP和硫脲迁移的影响,对4-AP印迹聚合物的电色谱识别机理进行了探讨.印迹识别能力随缓冲溶液离子强度的减小或流动相中乙腈比例的增大而增大.上述两种情形下,流动相中阳离子浓度均减少,使得聚合物孔穴中可与4-AP发生静电作用的有效羧基作用位点增加,从而显现出孔穴对印迹分子的专一亲和作用(形状、大小和作用力).缓冲溶液的种类和pH值对该印迹聚合物识别能力的影响较为复杂,在磷酸盐缓冲溶液体系中,pH值对识别能力的影响呈抛物线形,pH=5时识别能力最强;在醋酸盐缓冲溶液体系中,高pH值有利于分离.  相似文献   

7.
In this study, the molecular imprinting method was used to separate enantiomeric forms of chiral antidepressant drug, R,S-citalopram (R,S-CIT) in aqueous solution by CEC system combining the advantages of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). For that, an amino acid-based molecularly imprinted monolithic capillary column was designed and used as a stationary phase for selective separation of S-citalopram (S-CIT) for the first time. S-CIT was selectively separated from the aqueous solution containing the other enantiomeric form of R-CIT, which is the same in size and shape as the template molecule. Morphology of the molecularly imprinted (MIP S-CIT) and non-imprinted (NIP S-CIT) monolithic capillary columns was observed by scanning electron microscopy. Imprinting efficiency of MIP S-CIT monolithic capillary column used for selective S-CIT separation was verified by comparing with NIP S-CIT and calculated imprinting factor (I.F:1.81) proved the high selectivity of the MIP S-CIT for S-CIT. Cavities formed for S-CIT form enabled selective (α = 2.08) separation of the target molecule from the other enantiomeric R-CIT form. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 7.68 × 10−6 m2/Vs for R,S-CIT at pH 7.0 10 mM PB and 50% ACN ratio. The performance of both MIP S-CIT and NIP S-CIT columns was estimated by repeating the R,S-CIT separations with intra-batch and inter-batch studies for reproducibility of retention times of R,S-CITs. Estimated RSD values that are lower than 2% suggest that the monolithic columns separate R,S-CIT enantiomers without losing separation efficiency.  相似文献   

8.
A molecularly imprinted polymer as a selective solid-phase extraction adsorbent for efficient preconcentration and analysis of metribuzin residues in corn fields has been synthesised and evaluated. Results showed that molecular imprinting of the polymer was highly effective and the polymer had high affinity and selectivity for metribuzin in water-containing systems. A monolithic column containing molecularly imprinted polymer was prepared and used for on-line preconcentration, separation, and detection of metribuzin residues in soil sampled during investigation of the degradation of the herbicide metribuzin in corn fields. The detection limit of the method was 8.3 × 10?4 mg kg?1, recovery was between 94.9% and 103%, and RSD in analysis of soil samples was less than 3.2%.  相似文献   

9.
A novel zwitterionic hydrophilic porous monolithic stationary phase was prepared based on the thermal‐initiated copolymerization of N,N‐dimethyl‐N‐(3‐methacryl‐amidopropyl)‐N‐(3‐(sulfopropyl)ammonium betaine and ethylene glycol dimethacrylate. A typical hydrophilic separation mechanism was observed at a highly organic mobile phase (ACN >60%) on this optimized zwitterionic hydrophilic interaction chromatography (HILIC) monolithic stationary phase. Good permeability, stability, and column efficiency were observed on the final monolithic column. Additionally, a weak electrostatic interaction for charged analytes was confirmed in analysis of six benzoic acids by studying the influence of mobile phase pH and salt concentration on their retention behaviors on the obtained zwitterionic HILIC monolithic column. The optimized zwitterionic HILIC monolith exhibited good selectivity for a range of polar test analytes.  相似文献   

10.
A vanillin imprinted capillary monolithic column was synthesized by in situ polymerization reaction using ethylene-glycol dimethacrylate as cross-linking monomer and methacrylic acid as functional monomer. Under the optimum conditions of capillary electrochromatography, this molecularly imprinted polymer (MIP)-based column showed high selectivity and could recognize not only template molecule vanillin but also positional isomer o-vanillin from their structural analogues.  相似文献   

11.
A polymethacrylate‐based molecularly imprinted monolithic column bearing mixed functional monomers, using non‐covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2‐hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)‐ornidazole ((S)‐ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure‐assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non‐imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)‐ONZ‐imprinted monolithic column.  相似文献   

12.
赖家平  卢春阳  何锡文 《中国化学》2002,20(10):1012-1018
IntroductionThemolecularlyimprintedpolymers (MIPs)canaf fordspecificrecognitionofimprintmoleculesandmoder aterecognitionofthestructurallyrelatedcompounds .Theycanbeusedasanattractivealternativeorcomple menttonaturalantibodiesandreceptors .1 5MIPshavesomead…  相似文献   

13.
分子印迹整体柱快速分离烟酰胺及烟酸   总被引:6,自引:0,他引:6  
李志伟  刘树彬  杨更亮  李保芝  陈义 《色谱》2005,23(6):622-625
以药物烟酰胺为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,甲苯和正十二醇的混合溶液为致孔剂,采用原位聚合法制备了具有特定识别性能和分离能力的分子印迹聚合物,并将其作为高效液相色谱固定相,实现了模板分子与烟酸在2 min内的快速分离。在规格为50 mm×4.6 mm i.d.色谱柱上,以纯水为流动相(流速为7.0 mL/min)、操作温度为室温的色谱条件下,模板分子与烟酸的分离度达1.8。讨论了流动相中有机溶剂含量、醋酸及碱含量和流速对分离的影响。结果表明,原位聚合法制备的整体分子印迹聚合物在以纯水作流动相时对模板分子与其类似物有快速分离能力,这对于体内药物的分离富集研究具有很好的应用前景。  相似文献   

14.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

15.
This work is a first effort to prepare a low-density imprinted monolithic column for LC. The new molecularly imprinted polymer monolith was prepared with 30% (w/w) monomers in the pre-polymerization mixture while general high-density monoliths are prepared with 40% monomers. The resulting low-density (S)-naproxen-imprinted monolith produced better chiral resolution of rac-naproxen (R s = 1.55) and column efficiencies of imprinted molecules up to 2,860 plates m?1. Morphological characteristics of low density imprinted monolith was further studied by mercury intrusion porosimetry, scanning electron microscopy (SEM) and nitrogen sorption method. The experiments demonstrated that the strategy of low-density column may be one of a potential approach to the improvement of column efficiency of an imprinted stationary phase.  相似文献   

16.
A new chiral stationary phase for nateglinide (N-(trans-4-isopropylcyclohexylcarbonyl)-D-phenylalanine) based on a molecularly imprinted polymer has been prepared by non-covalent imprinting. For chromatographic analysis the effects on the separation of mobile phase composition, flow rate, and temperature were investigated, and the optimum conditions for HPLC were shown to be: mobile phase, acetonitrile; flow rate, 0.5 mL min?1; temperature, 25 °C. It was shown that the nateglinide-imprinted polymer was capable of recognizing the enantiomeric difference between nateglinide and its L enantiomer, whereas the non-imprinted polymer had no such ability. Scatchard analysis was used to investigate the binding characteristics of the nateglinide-imprinted stationary phase; this indicated that two classes of binding site were present in the imprinted polymer. The equilibrium dissociation constant (K D) and the apparent maximum number (Q max) of high- and low-affinity binding sites were 3.7 × 10?4 mol L?1 and 11.38 μmol g?1, and 1.81 × 10?3 mol L?1 and 27.73 μmol g?1, respectively.  相似文献   

17.
This work describes a comparison of three types of commercial high-performance liquid chromatography silica monolithic columns with different inner diameters and generations of monolithic sorbent: a “classic” monolithic column, the first generation (Onyx? monolithic C18, 100 mm?×?4.6 mm, Phenomenex); a “narrow” monolithic column for fast separation at lower flow rates (Chromolith® Performance RP-18e, 100 mm?×?3 mm, Merck); and a recently introduced “high-resolution” monolithic column, the next generation (Chromolith® HighResolution RP-18e, 100 mm?×?4.6 mm, Merck). Separation efficiency (number of theoretical plates, height equivalent to a theoretical plate and van Deemter curves), working pressure, the symmetry factor and resolution were critical aspects of the comparison in the case of the separation of ascorbic acid, paracetamol and caffeine. The separations were performed under isocratic conditions with a mobile phase consisting of 10:90 (v/v) acetonitrile–phosphoric acid (pH 2.80). Detailed comparison of the newest-generation monolithic column (Chromolith® HighResolution) with the previously introduced monolithic sorbents was performed and proved the advantages of the Chromolith® HighResolution column.
Figure
Chromatogram of separation using different flow rates (corresponded to optimal separation conditions); 1 0.5 mL?min-1; 2 0.6 mL?min-1; 3 0.3 mL?min-1  相似文献   

18.
Xiaoyi Wei  Li Qi  Gengliang Yang 《Talanta》2009,79(3):739-1198
A novel modified monolithic column with pH-responsive polymer chains was prepared by grafting methacrylic acid onto the poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith. The grafting polymerization was achieved in an in situ manner which was performed by pumping methacrylic acid directly through an acidic hydrolysis monolithic column using potassium peroxydisulfate initiated free-radical polymerization. The grafted monolithic column was demonstrated to be the pH-responsive to the pore structure and the chromatographic characterization. The permeability of the column and the retention factors of five benzene homologues decreased due to the conformational changes of the polymer chains when the pH of mobile phase increased from 4.5 to 7.5. Furthermore, the modified monolithic column was used as the pH-responsive stationary phase and exhibited an excellent separation of four basic proteins.  相似文献   

19.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

20.
Molecularly imprinted monolithic columns were prepared for chiral separation of tyrosine and its amino acid derivatives by in situ therm-initiated copolymerization of methacrylic acid, 4-vinylpyridine and ethylene glycol dimethacrylate. The enantiomers were rapidly separated on monolithic columns in less than 10 min by pressurized capillary electrochromatography (pCEC). The influences of several parameters such as the content of cross-linking monomer on the composition of the pre-polymerization mixture were systematically investigated. The influence of the pCEC conditions including the composition of the mobile phase was also optimized to obtain the good enantioseparation. It was found that in addition to molecularly imprinted recognition, chromatographic retention and electrophoretic migration play important roles in the retention and chiral recognition of molecularly imprinted polymer (MIP) columns. The cross-selectivity for similar amino acids and its derivatives were systematical investigated for understanding the recognition mechanism on the MIP monolithic columns. The results indicated that molecularly imprinted polymer recognizes the template molecule by its molecular shape defined binding cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号