首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The one‐pot synthesis of 4‐aryl‐1,4‐dihydro‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 2 was achieved in good yields by the reaction of aryl(2‐isothiocyanatophenyl)methanones 1 with lithium enolates of acetates and tertiary acetamides. (2E)‐1‐(2‐Isothiocyanatophenyl)‐3‐phenylprop‐2‐en‐1‐one ( 3 ) gave 1,4‐dihydro‐4‐[(1E)‐2‐phenylethenyl]‐2‐thioxo‐2H‐3,1‐benzoxazine‐4‐acetic acid derivatives 4 in good yields as well.  相似文献   

2.
We have developed a one‐pot procedure for the preparation of N,N‐disubstituted (Z)‐4‐(halomethylidene)‐4H‐3,1‐benzothiazin‐2‐amines 3 from 2‐(2,2‐dihaloethenyl)phenyl isothiocyanates 1 , easily accessible from known 2‐(2,2‐dihaloethenyl)benzenamines by a three‐step sequence, and secondary amines. Thus, the isothiocyanates 1 react with secondary amines to afford the corresponding thiourea derivatives, of which the treatment with NaH provides the desired products.  相似文献   

3.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

4.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

5.
Reactions of 1,2‐dihydro‐4H‐3,1‐benzothiazine‐2,4‐dithiones (trithioisatoic anhydrides) 3 with N‐substi‐tuted benzylamines 9 gave 1,2‐dihydroquinazoline‐4‐thiones 10 , o‐thioureidodithiobenzoic acid 11 , o‐aminothiobenzamides 12 , 2‐amino‐3,1‐benzothiazine‐4‐thiones 13 , or quinazoline‐2,4‐dithiones 14 , depending on the kinds of amine and the reaction solvent. On the other hand, reaction of 3 with trialkyl phosphites afforded dialkyl (1,2‐dihydro‐2‐thioxo‐4H‐3,1‐benzothiazin‐4‐yl)phosphonates 18 .  相似文献   

6.
A series of 3‐(4‐phenylisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 6a – l ) derivatives has been efficiently synthesized by straightforward sequential reactions. Tandem Vilsmeier Hack reaction/cyclization/bromination/Suzuki cross‐coupling reactions were successfully applied to the preparation of title compounds in good‐to‐high yields. In the synthetic sequences, 3‐chloro‐3‐(2‐oxo‐2H‐chromen‐3‐yl)acrylaldehydes ( 2 ) were found to react with ammonium thiocyanate to yield the corresponding 3‐(isothiazol‐5‐yl)‐2H‐chromen‐2‐ones ( 3 ). These derivatives were brominated with N‐bromo succinamide to yield the corresponding regioselective 3‐(4‐bromoisothiazol‐5‐yl)‐2H‐chromen‐2‐one ( 4 ). Finally, compound 4 was treated with various phenyl/pyrazole/7H –pyrrolo[2,3‐d]pyrimidinyl boronic acids 5a – l in the presence of K2CO3 and Pd catalyst in dimethylformamide to yield the corresponding title derivatives 6a – l . All the synthesized compounds were characterized by analytical and spectral studies. All the final compounds were screened against different cancer cell lines (A549, PC3, SKOV3, and B16F10), and among these compounds, 6b , 6g , 6h , and 6l displayed moderate cytotoxic activity against the tested cell lines.  相似文献   

7.
Oxidation of some derivatives of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐one have been investigated in detail using lead(IV) acetate in acetic acid under reflux conditions and periodic acid in aqueous ethanol at room temperature. We realized that during the first 5–15 minutes of the oxidation reactions in lead(IV) acetate/acetic acid system, 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives have been synthesized chemo selectively, while, if the reaction mixtures stirred for additional 3 hours, the main products would be 2‐(2‐(Methoxycarbonyl)‐3‐oxo‐2,3‐dihydrobenzofuran‐2‐yl)benzoic acids. Moreover, room temperature oxidation of 4b,9b–dihydroxyindeno[1,2‐b]benzofuran‐10‐ones by periodic acid (H5IO6), leads to the formation of 3H,3’H‐spiro[benzofuran‐2,1′‐isobenzofuran]‐3,3′‐dione derivatives in good to excellent yields.  相似文献   

8.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

9.
An efficient method for the preparation of 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepine derivatives under mild conditions has been developed. The reaction of 2‐(2‐aminophenyl)ethanols 1 with acid chlorides in the presence of excess Et3N in THF at room temperature gave the corresponding N‐acylated intermediates 2 , which were dehydrated by treatment with POCl3 to give 2‐substituted 4‐aryl‐4,5‐dihydro‐3,1‐benzoxazepines 3 in a one‐pot reaction.  相似文献   

10.
Eight new 2‐methyl‐4(3H)‐quinazolinones (8a‐8d, 9c, 9d, 10c, 10d) with one or two chlorine atoms in the benzene ring and a 5‐methyl‐1,3‐thiazol‐2‐yl, 4‐methyl‐1,3‐thiazol‐2‐yl, and 5‐ethyl‐1,3,4‐thiadiazol‐2‐yl substituent in position 3 of the heterocyclic ring were synthesized and characterized. The two step procedure (Scheme 1) utilizes chlorosubstituted anthranilic acids (3a‐3d) and acetic anhydride as the starting materials, with the respective chlorosubstituted 2‐methyl‐4H‐3,1‐benzoxazin‐4‐ones (4a‐4d) as the intermediates. The quinazoline derivatives were characterized by their melting points, elemental analyses and the mass, ultraviolet, infrared, and 1H and 13C nmr spectra. The new compounds are expected to be biologically active.  相似文献   

11.
A series of novel pyrazolyl‐substituted 1,3,4‐oxadiazole derivatives ( 4a‐4o ) were prepared by cyclization of the intermediate N′‐((3‐aryl‐l‐phenyl‐pyrazol‐4‐yl)methylene)arylhydrazide with acetic anhydride. The structures of the new compounds were confirmed by IR, 1H NMR, MS and elemental analysis. Furthermore, preliminary bioassay of some of the title compounds indicated that they exhibited moderate inhibition against HIV‐1 PR.  相似文献   

12.
1‐(1,3‐Dioxo‐1,3‐dihydro‐2H‐isoindol‐2‐yl)‐1H‐pyrrol‐2 carbaldehyde 4 was synthesized by Vilsmeier‐Haack reaction from 2‐(pyrrol‐1‐yl) phthalimide. Reduction of 4 by sodium borohydride, or action of Grignard reagents on 4 led to the corresponding alcohols 5 which were cyclized to pyrroloxadiazino isoin‐doles 1 by heating in the presence of silica gel. Transformation of the hydroxylactam 6 with acetic acid derivatives led to the esters 7 which gave, after saponification, pyrroloxa(or thia)diazepinoisoindolones 2 by intramolecular cyclization.  相似文献   

13.
A convenient approach to 2,2′‐(1,4‐phenylene)bis[1‐acetyl‐1,2‐dihydro‐4H‐3,1‐benzoxazin‐4‐one] derivatives 4 was explored employing the one‐pot condensation of anthranilic acids (=2‐aminobenzoic acids) 1 with terephthalaldehyde (=benzene‐1,4‐dicarboxaldehyde; 2 ) under ultrasound‐irradiation conditions (Scheme 1). The reactions proceeded smoothly in the presence of excess Ac2O in the absence of any other catalyst and solvent to afford the respective products in high yields.  相似文献   

14.
This work describes the synthesis of novel 1,2,3‐triazole‐4‐linked (2E,6E)‐2‐benzylidene‐6‐(4‐nitrobenzylidene)cyclo‐hexanones starting from cyclohexanone. 1‐(Cyclohex‐1‐en‐1‐yl)piperidine, the enamine from cyclohexanone and piperidine, reacted with 4‐nitrobenzaldehyde to obtain 2‐(4‐nitrobenzylidene)cyclohexanone. Condensation of the latter compound with (prop‐2‐yn‐1‐yloxy)benzaldehyde derivatives under acidic conditions gave (4‐nitrobenzylidene)‐[(prop‐2‐yn‐1‐yloxy)‐benzylidene]cyclohexanones. Finally, ‘click reaction’ of these derivatives and various organic azides led to the title compounds. All compounds were examined by MTT assay for cytotoxic activity in one human breast cancer cell line, MDA‐MB‐231.  相似文献   

15.
The reaction of 2‐cyanopyridine with N‐phenylthiosemicarbazide afforded 2‐[amino(pyridin‐2‐yl)methylidene]‐N‐phenylhydrazine‐1‐carbothioamide (Ham4ph) and crystals of 4‐phenyl‐5‐(pyridin‐2‐yl)‐2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thione (pyph3NS, 1 , C13H10N4S). Crystals of methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetate (phpy2NS, 2 , C16H14N4O2S), derived from 1 , were obtained by the reaction of Ham4ph with chloroacetic acid, followed by the acid‐catalyzed esterification of the carboxylic acid with methyl alcohol. Crystals of bis(methanol‐κO)bis(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)zinc(II)/cadmium(II) hexabromidocadmate(II), [Zn0.76Cd0.24(C16H14N4O2S)2(CH3OH)2][Cd2Br6] or [Zn0.76Cd0.24(phpy2NS)2(MeOH)2][Cd2Br6], 3 , and dichlorido(methyl 2‐{[4‐phenyl‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl‐κ2N1,N5]sulfanyl}acetato)mercury(II), [HgCl2(C16H14N4O2S)] or [Hg(phpy2NS)Cl2], 4 , were synthesized using ligand 2 and CdBr2 or HgCl2, respectively. The molecular and supramolecular structures of the compounds were studied by X‐ray diffractometry. The asymmetric unit of 3 is formed from CdBr3 and M(phpy2NS)(MeOH) units, where the metal centre M has a 76% occupancy of ZnII and 24% of CdII. The M2+ centre of the cation, located on a crystallographic inversion centre, is hexacoordinated and appears as a slightly distorted octahedral [MN4O2]2+ cation. The Cd centre of the anion is coordinated by two terminal bromide ligands and two bridging bromide ligands that generate [Cd2Br6]2? cadmium–bromide clusters. These clusters display crystallographic inversion symmetry forming two edge‐shared tetrahedra and serve as agents that direct the structure in the formation of supramolecular assemblies. In mononuclear complex 4 , the coordination geometry around the Hg2+ ion is distorted tetrahedral and comprises two chloride ligands and two N‐atom donors from the phpy2NS ligand, viz. one pyridine N atom and the other from triazole. In the crystal packing, all four compounds exhibit weak intermolecular interactions, which facilitate the formation of three‐dimensional architectures. Along with the noncovalent interactions, the structural diversity in the complexes can be attributed to the metal centre and to the coordination geometry, as well as to its ionic or neutral character.  相似文献   

16.
As an important class of heterocyclic compounds, 1,3,4‐thiadiazoles have a broad range of potential applications in medicine, agriculture and materials chemistry, and were found to be excellent precursors for the crystal engineering of organometallic materials. The coordinating behaviour of allyl derivatives of 1,3,4‐thiadiazoles with respect to transition metal ions has been little studied. Five new crystalline copper(I) π‐complexes have been obtained by means of an alternating current electrochemical technique and have been characterized by single‐crystal X‐ray diffraction and IR spectroscopy. The compounds are bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[nitratocopper(I)], [Cu2(NO3)2(C6H9N3S)2], (1), bis[μ‐5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine]bis[(tetrafluoroborato)copper(I)], [Cu2(BF4)2(C6H9N3S)2], (2), μ‐aqua‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}bis[nitratocopper(I)], [Cu2(NO3)2(C5H7N3S2)2(H2O)], (3), μ‐aqua‐(hexafluorosilicato)bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I)–acetonitrile–water (2/1/4), [Cu2(SiF6)(C5H7N3S2)2(H2O)]·0.5CH3CN·2H2O, (4), and μ‐benzenesulfonato‐bis{μ‐5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine}dicopper(I) benzenesulfonate–methanol–water (1/1/1), [Cu2(C6H5O3S)(C5H7N3S2)2](C6H5O3S)·CH3OH·H2O, (5). The structure of the ligand 5‐methyl‐N‐(prop‐2‐en‐1‐yl)‐1,3,4‐thiadiazol‐2‐amine (Mepeta ), C6H9N3S, was also structurally characterized. Both Mepeta and 5‐[(prop‐2‐en‐1‐yl)sulfanyl]‐1,3,4‐thiadiazol‐2‐amine (Pesta ) (denoted L ) reveal a strong tendency to form dimeric {Cu2L 2}2+ fragments, being attached to the metal atom in a chelating–bridging mode via two thiadiazole N atoms and an allylic C=C bond. Flexibility of the {Cu2(Pesta )2}2+ unit allows the CuI atom site to be split into two positions with different metal‐coordination environments, thus enabling the competitive participation of different molecules in bonding to the metal centre. The Pesta ligand in (4) allows the CuI atom to vary between water O‐atom and hexafluorosilicate F‐atom coordination, resulting in the rare case of a direct CuI…FSiF52− interaction. Extensive three‐dimensional hydrogen‐bonding patterns are formed in the reported crystal structures. Complex (5) should be considered as the first known example of a CuI(C6H5SO3) coordination compound. To determine the hydrogen‐bond interactions in the structures of (1) and (2), a Hirshfeld surface analysis has been performed.  相似文献   

17.
A simple and efficient one‐pot microwave‐assisted click formation of 1‐(substituted)‐1H‐1,2,3‐triazol‐4‐yl)methyl)diphenylphosphineoxide derivatives via Huisgen regioselective [3+2]‐cycloaddition of an in situ generated organic azides and diphenyl(prop‐2‐yn‐1‐yl)phosphine oxide in highly polar DMSO‐H2O medium. This synthetic protocol is mild, requires shorter reaction time, and afforded products in excellent yields with high regioselectivity.  相似文献   

18.
The carboxyl­ic acid group and the double bond are coplanar in (E)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, C10H7NO3, whereas in isomeric (Z)‐3‐(benzoxazol‐2‐yl)­prop‐2‐enoic acid, also C10H7NO3, they are almost orthogonal. In both isomers, a strong O—H⋯N hydrogen bond, with the carboxyl­ic acid group as a donor and the pyridine‐like N atom as an acceptor, and weak C—H⋯O interactions contribute to the observed supramolecular structures, which are completed by π–π stacking interactions between oxazole and benzenoid rings.  相似文献   

19.
使用三氯化铟在乙醇中回流的条件下催化不同的靛红衍生物与4-羟基脯氨酸反应,以较高的产率(83-99%)和纯度合成得到了相应的产物3-(1-吡咯基)吲哚-2-酮化合物,并对这个反应做了一个比较全面系统的研究.  相似文献   

20.
The synthesis of a new series of 4‐aryl‐3‐chloro‐2‐oxo‐N‐[3‐(10H‐phenothiazin‐10‐yl)propyl]azetidine‐1‐carboxamides, 4a – 4m , is described. Phenothiazine on reaction with Cl(CH2)3Br at room temperature gave 10‐(3‐chloropropyl)‐10H‐phenothiazine ( 1 ), and the latter reacted with urea to yield 1‐[3‐(10H‐phenothiazin‐10‐yl)propyl]urea ( 2 ). Further reaction of 2 with several substituted aromatic aldehydes led to N‐(arylmethylidene)‐N′‐[3‐(phenothiazin‐10‐yl)propyl]ureas 3a – 3m , which, on treatment with ClCH2COCl in the presence of Et3N, furnished the desired racemic trans‐2‐oxoazetidin‐1‐carboxamide derivatives 4a – 4m . The structures of all new compounds were confirmed by IR, and 1H‐ and 13C‐NMR spectroscopy, FAB mass spectrometry, and chemical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号