首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

2.
Hierarchical ZnO hollow spheres (400–500 nm in diameter) consisting of ZnO nanoparticles with a diameter of approximately 15 nm have been successfully prepared by a facile and rapid sonochemical process. The formation of hierarchical ZnO hollow spheres is attributed to the oriented attachment and subsequent Ostwald ripening process according to time‐dependent experiments. The as‐prepared ZnO hollow spheres are used as a photoanode in dye‐sensitized solar cells and exhibit a highly efficient power conversion efficiency of 4.33 %, with a short‐circuit current density of 9.56 mA cm?2, an open‐circuit voltage of 730 mV, and a fill factor of 0.62 under AM 1.5 G one sun (100 mW cm?2) illumination. Moreover, the photovoltaic performance (4.33 %) using the hierarchical ZnO hollow spheres is 38.8 % better than that of a ZnO nanoparticle photoelectrode (3.12 %), which is mainly attributed to the efficient light scattering for the former.  相似文献   

3.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

4.
Zn‐doped anatase TiO2 nanoparticles are synthesized by a one‐step hydrothermal method. Detailed electrochemical measurements are undertaken to investigate the origin of the effect of Zn doping on the performance of dye‐sensitized solar cells (DSSCs). It is found that incorporation of Zn2+ into an anatase lattice elevates the edge of the conduction band (CB) of the photoanodes and the Fermi level is shifted toward the CB edge, which contributes to the improvement in open‐circuit voltage (VOC). Charge‐density plots across the cell voltage further confirm the increase in the CB edge in DSSCs directly. Photocurrent and transient photovoltage measurements are employed to study transport and recombination dynamics. The electron recombination is accelerated at higher voltages close to the CB edge, thus leading to a negative effect on the VOC.  相似文献   

5.
吴晓宏  ab  王松a  郭云b  谢朝阳b  韩璐a  姜兆华a 《中国化学》2008,26(10):1939-1943
在染料敏化太阳能电池中,TiO2膜和敏化剂决定着电池的总体效率和机械性能。本文以4-甲基吡啶为原料,经过偶联、氧化、配位和配体交换反应合成了cis-RuL2(SCN)2, (L=2,2’-联吡啶-4,4’-二羧酸),通过溶胶-凝胶法制备了TiO2膜。为了提高TiO2膜的光电性能,将不同浓度的La(NO3)3 (0.1%、0.3%、0.5%和0.7%) 加入到溶胶中,采用cis-RuL2(SCN)2将掺杂前后的TiO2膜进行敏化。利用X射线衍射仪、原子力显微镜和X射线光电子能谱对所得薄膜进行结构表征。结果表明,当La离子的浓度为0.5%时,太阳能电池的效率最高,短路电流和开路电压比未掺杂的分别提高了0.54 mA/cm2和30.41 mV。  相似文献   

6.
Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath‐figure method. The honeycomb‐patterned thin films were prepared by casting gold nanoparticle‐doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath‐figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath‐figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered‐array absorptions. Organic ligand‐stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.  相似文献   

7.
The performance of dye‐sensitized ZnO solar cells was improved by a facile surface‐treatment approach through chemical‐bath deposition. After the surface treatment, the quantum dots of Zn2SnO4 were deposited onto ZnO nanoparticles accompanied by the aggregations of Zn2SnO4 nanoparticles. The ZnO film displayed a better resistance to acidic dye solution on account of the deposited Zn2SnO4 nanoparticles. Meanwhile, the open‐circuit photovoltage was greatly enhanced, which can be ascribed to the increased conduction‐band edge of ZnO and inhibited interfacial charge recombination. Although the deposition of Zn2SnO4 decreased the adsorption amounts of N719 dye, the aggregates of Zn2SnO4 with a size of 350–450 nm acted as the effective light‐scattering layer, thereby resulting in an improved short‐circuit photocurrent. By co‐sensitizing 10 μm‐thick ZnO film with N719 and D131 dyes, a top efficiency of 4.38 % was achieved under the illumination of one sun (AM 1.5, 100 mW cm?2).  相似文献   

8.
《化学:亚洲杂志》2017,12(3):332-340
A new series of acetylene‐bridged phenothiazine‐based di‐anchoring dyes have been synthesized, fully characterized, and used as the photoactive layer for the fabrication of conventional dye‐sensitized solar cells (DSSCs). Tuning of their photophysical and electrochemical properties using different π‐conjugated aromatic rings as the central bridges has been demonstrated. This molecular design strategy successfully inhibits the undesirable charge recombination and prolongs the electron lifetime significantly to improve the power conversion efficiency (η ), which was proven by the detailed studies of electrochemical impedance spectroscopy (EIS) and open‐circuit voltage decay (OCVD). Under a standard air mass (AM) 1.5 irradiation (100 mW cm−2), the DSSC based on the dye with phenyl bridging unit exhibits the highest η of 7.44 % with open‐circuit photovoltage (V oc) of 0.796 V, short‐circuit photocurrent density (J sc) of 12.49 mA cm−2 and fill factor (ff) of 0.748. This η value is comparable to that of the benchmark N719 under the same conditions.  相似文献   

9.
Three new triphenylamine dyes that contain alkylthio‐substituted thiophenes with a low bandgap as a π‐conjugated bridge unit were designed and synthesized for organic dye‐sensitized solar cells (DSSCs). The effects of the structural differences in terms of the position, number, and shape of the alkylthio substituents in the thiophene bridge on the photophysical properties of the dye and the photovoltaic performance of the DSSC were investigated. The introduction of an alkylthio substituent at the 3‐position of thiophene led to a decrease in the degree of redshift and the value of the molar extinction coefficient of the charge‐transfer band, and the substituent with a bridged structure led to a larger redshift than that of the open‐chain structure. The introduction of bulky and hydrophobic side chains decreased the short‐circuit photocurrent (Jsc), which was caused by the reduced amount of dye adsorbed on TiO2. This resulted in a decrease in the overall conversion efficiency (η), even though it could improve the open‐circuit voltage (Voc) due to the retardation of charge recombination. Furthermore, the change in solvents for TiO2 sensitization had a critical effect on the performance of the resulting DSSCs due to the different amounts of dye adsorbed. Based on the optimized dye bath and molecular structure, the ethylene dithio‐substituted dye ( ATT3 ) showed a prominent solar‐to‐electricity conversion efficiency of 5.20 %.  相似文献   

10.
Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open‐circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45 %. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye‐sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers.  相似文献   

11.
A series of platinum(II) alkynyl‐based sensitizers has been synthesized and found to show light‐to‐electricity conversion properties. These dyes were developed as sensitizers for the application in nanocrystalline TiO2 dye‐sensitized solar cells (DSSCs). Their photophysical and electrochemical properties were studied. The excited‐state property was probed using nanosecond transient absorption spectroscopy, which showed the formation of a charge‐separated state that arises from the intramolecular photoinduced charge transfer from the platinum(II) alkynylbithienylbenzothiadiazole moiety (donor) to the polypyridyl ligand (acceptor). A lifetime of 3.4 μs was observed for the charge‐separated state. A dye‐sensitized solar cell based on one of the complexes showed a short‐circuit photocurrent of 7.12 mA cm?2, an open circuit voltage of 780 mV, and a fill factor of 0.65, thus giving an overall power conversion efficiency of 3.6 %.  相似文献   

12.
2‐Methyl‐4‐propoxypyridine, a new pyridine derivative, has been synthesized and used as an additive in the liquid electrolyte of dye‐sensitized solar cells (DSSCs). Compared with 2‐methylpyridne and 4‐tert‐pyridine, they were employed to study the influence of the pyridine derivative additives on the rate of recombination at the electrode/dye/electrolyte interfaces and band edge shift of TiO2, which were measured by time‐resolved mid‐infrared absorption spectroscopy and Mott–Schottky analysis, respectively. It was found that the rate of interfacial charge recombination was enhanced when the pyridine derivative additives were present in the electrolyte. Meanwhile, the additives caused a negative shift of the band edge. However, the net effect of pyridine derivative addition was to improve the open‐circuit photovoltage according to the photoelectrochemical measurement, indicating that negative shift of conduction band of TiO2 was a predominant factor in improving the open‐circuit photovoltage. Also, the result was strongly supported by the dark current measurement. Therefore, it provides a microscopic account for the function of the pyridine derivative additives on the open‐circuit photovoltage enhancement of the DSSCs. Furthermore, the decrease of the short‐circuit photocurrent of the cells was also attributed to the slower dye regeneration due to the addition of additives from the results of cyclic voltammetry measurement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

14.
We report two novel types of hierarchically structured iodine‐doped ZnO (I? ZnO)‐based dye‐sensitized solar cells (DSCs) using indoline D205 and the ruthenium complex N719 as sensitizers. It was found that iodine doping boosts the efficiencies of D205 I? ZnO and N719 I? ZnO DSCs with an enhancement of 20.3 and 17.9 %, respectively, compared to the undoped versions. Transient absorption spectra demonstrated that iodine doping impels an increase in the decay time of I? ZnO, favoring enhanced exciton life. Mott–Schottky analysis results indicated a negative shift of the flat‐band potential (Vfb) of ZnO, caused by iodine doping, and this shift correlated with the enhancement of the open circuit voltage (Voc). To reveal the effect of iodine doping on the effective separation of e?‐h+ pairs which is responsible for cell efficiency, direct visualization of light‐induced changes in the surface potential between I? ZnO particles and dye molecules were traced by Kelvin probe force microscopy. We found that potential changes of iodine‐doped ZnO films by irradiation were above one hundred millivolts and thus significantly greater. In order to correlate enhanced cell performance with iodine doping, electrochemical impedance spectroscopy, incident‐photon‐current efficiency, and cyclic voltammetry investigations on I? ZnO cells were carried out. The results revealed several favorable features of I? ZnO cells, that is, longer electron lifetime, lower charge‐transfer resistance, stronger peak current, and extended visible light harvest, all of which serve to promote cell performance.  相似文献   

15.
The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol–gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV–Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The double-layer DSC made of nanostructured TiO2 film with phase composition of 78 % anatase and 22 % rutile as the under-layer and mixtures of anatase-nanoparticles and anatase-microparticles as the over-layer (i.e., NM solar cell) was shown the highest power conversion efficiency (PCE) of 6.04 % and open circuit voltage of 795 mV. This was achieved due to the optimal balance between the light scattering effect and dye sensitization parameters. Optimum light scattering of photoanode led to improve the PCE of NM double-layer solar cell which was demonstrated by diffuse reflectance spectroscopy.  相似文献   

16.
4‐tert‐Butylpyridine (4‐TBP) has been widely used as additive in dye‐sensitized solar cells (DSC), owing to its improvement of the fill factor and the open circuit voltage of DSC. In this paper, the adsorption of 4‐TBP on the rutile TiO2(110) surface in DSC was studied by using the density functional theory at DFT/B3LYP level. By comparing the results with those attained from experiments, it was concluded that the 4‐TBP could chemiadsorb on the incompletely covered surface Ti atoms in the electrode. The probable mechanism of compressed recombination by coordinated 4‐TBP in DSC was proposed.  相似文献   

17.
Composite photocatalyst films have been fabricated by depositing BiVO4 upon TiO2 via a sequential ionic layer adsorption reaction (SILAR) method. The photocatalytic materials were investigated by XRD, TEM, UV/Vis diffuse reflectance, inductively coupled plasma optical emission spectrometry (ICP‐OES), XPS, photoluminescence and Mott–Schottky analyses. SILAR processing was found to deposit monoclinic‐scheelite BiVO4 nanoparticles onto the surface, giving successive improvements in the films′ visible light harvesting. Electrochemical and valence band XPS studies revealed that the prepared heterojunctions have a type II band structure, with the BiVO4 conduction band and valence band lying cathodically shifted from those of TiO2. The photocatalytic activity of the films was measured by the decolourisation of the dye rhodamine 6G using λ>400 nm visible light. It was found that five SILAR cycles was optimal, with a pseudo‐first‐order rate constant of 0.004 min?1. As a reference material, the same SILAR modification has been made to an inactive wide‐band‐gap ZrO2 film, where the mismatch of conduction and valence band energies disallows charge separation. The photocatalytic activity of the BiVO4–ZrO2 system was found to be significantly reduced, highlighting the importance of charge separation across the interface. The mechanism of action of the photocatalysts has also been investigated, in particular the effect of self‐sensitisation by the model organic dye and the ability of the dye to inject electrons into the photocatalyst′s conduction band.  相似文献   

18.
Four new unsymmetric platinum(II) bis(aryleneethynylene) derivatives have been designed and synthesized, which showed good light‐harvesting capabilities for application as photosensitizers in dye‐sensitized solar cells (DSSCs). The absorption, electrochemical, time‐dependent density functional theory (TD‐DFT), impedance spectroscopic, and photovoltaic properties of these platinum(II)‐based sensitizers have been fully characterized. The optical and TD‐DFT studies show that the incorporation of a strongly electron‐donating group significantly enhances the absorption abilities of the complexes. The maximum absorption wavelength of these four organometallic dyes can be tuned by various structural modifications of the triphenylamine and/or thiophene electron donor, improving the light absorption range up to 650 nm. The photovoltaic performance of these dyes as photosensitizers in mesoporous TiO2 solar cells was investigated, and a power conversion efficiency as high as 1.57 % was achieved, with an open‐circuit voltage of 0.59 V, short‐circuit current density of 3.63 mA cm?2, and fill factor of 0.73 under simulated AM 1.5G solar illumination.  相似文献   

19.
Three electron donor‐?? bridge‐electron acceptor (D‐π‐A) organic dyes bearing two carboxylic acid groups were applied to dye‐sensitized solar cells (DSSC) as sensitizers, in which one triphenylamine or modified triphenylamine and two rhodanine‐3‐acetic acid fragments act as D and A, respectively. It was found that the introduction of t‐butyl or methoxy group in the triphenylamine subunit could lead to more efficient photoinduced intramolecular charge transfer, thus improving the overall photoelectric conversion efficiency of the resultant DSSC. Under global AM 1.5 solar irradiation (73 mW·cm?2), the dye molecule based on methoxy‐substituted triphenylamine achieved the best photovoltaic performance: a short circuit photocurrent density (Jsc) of 12.63 mA·cm?2, an open circuit voltage (Voc) of 0.55 V, a fill factor (FF) of 0.62, corresponding to an overall efficiency (η) of 5.9%.  相似文献   

20.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号