首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

2.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

3.
《Electroanalysis》2005,17(17):1529-1533
The direct electrochemical oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode (EPPG) is investigated and compared with other common carbon‐based electrodes, specifically glassy carbon, boron doped diamond and basal plane pyrolytic graphite. It is found that the EPPG electrode shows a significantly higher degree of electrochemical reversibility than the other electrode substrates giving rise to an analytically optimized limit of detection and sensitivity of 7.1×10?5 M and 0.065 A M?1 respectively.  相似文献   

4.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

5.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

6.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

7.
《Electroanalysis》2004,16(9):769-773
This communication reports on the electrochemical investigation of adenine on a sol‐gel carbon composite electrode (CCE). Cyclic voltammetric (CV) technique is used to characterize the redox behavior of adenine at CCE. The peak current and peak potentials are dependent on the pH of the buffer solution. From the scan rate and peak current study, there is evidence of adsorption of adenine on the CCE. The parameters affecting the differential pulse stripping adsorption peak were systematically optimized. Under optimum conditions of Eacc=?0.10 and tacc=60 s, a linear calibration plot was obtained, 2×10?7–1×10?6 M. This CCE is useful for the simultaneous analysis of adenine and guanine from denatured DNA.  相似文献   

8.
The electrochemical oxidation of procaine hydrochloride (PC?HCL, 2‐diethylaminoethyl 4‐aminobenzoate hydrochloride) was investigated at as‐deposited boron‐doped diamond (ad‐BDD) electrode, anodically oxidized BDD (ao‐BDD) electrode and glassy carbon (GC) electrode using cyclic voltammetry (CV). Well‐defined cyclic voltammograms were obtained for PC?HCL oxidation with high signal‐to‐background (S/B) ratio, low tendency for adsorption, good reproducibility and long‐term stability at ad‐BDD electrode, demonstrating its superior electrochemical behavior and significant advantages in contrast to ao‐BDD and GC electrode. At 100 μM PC?HCL, the voltammetric S/B ratio was nearly one order of magnitude higher at an ad‐BDD electrode than that at a GC electrode. In a separate set of experiments for oxidation of 100 μM PC?HCL, 96%, 92% and 84% of the initial oxidation peak current was retained at the ad‐BDD, ao‐BDD and GC electrode, respectively, by stirring the solution after the tenth cycle. The current response was linearly proportional to the square root of the scan rate within the range 10–1000 mV s?1 in 10 μM PC?HCL solutions, indicating that the oxidation process was diffusion‐controlled with negligible adsorption at an ad‐BDD surface. The good linearity was observed for a concentration range from 5 to 200 μM with a linear equation of y=0.03517x+0.65346 (r=0.999), and the detection limit was 0.5 μM for oxidation of PC?HCL at the ad‐BDD electrode. The ad‐BDD electrode could maintain 100% of its original activity after intermittent use for 3 months.  相似文献   

9.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

10.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

11.
A novel room temperature ionic liquid (i.e., 1‐octyl‐3‐methylimidazolium hexafluorophosphate, OMIMPF6)‐multiwall carbon nanotube (MWNT) gel‐chitosan (Chi) composite modified glassy carbon electrode (GCE) was fabricated and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The OMIMPF6‐MWNT gel‐Chi composite showed good conductivity, stability, and extraction effect due to the synergic action of OMIMPF6, MWNT, and Chi. Furthermore, it was found that the OMIMPF6‐MWNT gel‐Chi composite had strong electrocatalytic effect on the oxidation of nitrite and at the OMIMPF6‐MWNT gel‐Chi/GCE nitrite could produce a very sensitive anodic peak. Under optimized conditions, the peak current was linear to nitrite concentration from 2.0×10?8 to 6.0×10?5 M. The detection limit was 1.0×10?8 M. The electrode also exhibited acceptable stability, repeatability and selectivity. It was used successfully for the determination of nitrite in soil, sewage and sausage samples.  相似文献   

12.
The electrocatalytic oxidation of oxalate at several carbon based electrodes including basal plane (BPPG) and edge plane (EPPG) pyrolytic graphite and glassy carbon (GC) electrode, was studied. The electrodes were examined for the sensing of oxalate ions in aqueous solutions and all three electrodes showed a response to oxalate additions. The peak of oxalate oxidation at BPPG electrode appeared at lower potential, +1.13 V vs. SCE, than at EPPG (+1.20 V vs. SCE) and GC electrode (+1.44 V vs. SCE). Oxalate oxidation at BPPG electrode was studied in more details for response characteristics (potential and current), effects of pH, temporal characteristics of response potential and current. The results indicated that oxalate oxidation proceeds as two‐electron process at the BPPG electrode with a transfer coefficient β and a diffusion coefficient D evaluated to be 0.45 and 1.03 (±0.04)×10?5 cm2 s?1 respectively. The BPPG electrode was found to be suitable for oxalate determination in aqueous media showing linear response to oxalate concentration with a sensitivity of 0.039 AM?1 and a limit of detection of 0.7 μM.  相似文献   

13.
A new sensor based on the grafting of 4‐tert‐butylcatechol on the surface of a glassy carbon electrode (GC) was developed for the catalytic oxidation of homocysteine ( Hcy ). The GC‐modified electrode exhibited a reversible redox response at neutral pH. Under the optimum conditions cyclic voltammetric results indicated the excellent electrocatalytic activity of modified electrode toward the oxidation of Hcy at reduced over‐potential about 350 mV. A linear dynamic range of 0.01–3.0 mM and a detection limit of 1.0 µM were obtained for Hcy . The modified electrode was used as an electrochemical sensor for selective determination of Hcy in human blood.  相似文献   

14.
A 1‐[2‐hydroxynaphthylazo]‐6‐nitro‐2‐naphthol‐4‐sulfonate/ CuO nanoparticles modified carbon paste electrode (HNNSCCPE) was constructed and the electro‐oxidation of isoprenaline at the surface of the modified electrode was studied using cyclic voltammetry (CV), chronoamperometry (CHA), and square wave voltammetry (SWV). Under the optimized conditions, the square wave voltammetric peak current of isoprenaline increased linearly with isoprenaline concentrations in the range of 1.0×10?7 to 7.0×10?4 M and detection limit of 5.0×10?8 M was obtained for isoprenaline. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of isoprenaline, acetaminophen and N‐acetyl‐L‐cysteine which makes it suitable for the detection of isoprenaline in the presence of acetaminophen and N‐acetyl‐L‐cysteine in real samples.  相似文献   

15.
An ionic liquid N‐hexylpyridinium hexafluorophosphate (HPPF6) modified carbon paste electrode was fabricated for the sensitive voltammetric determination of adenosine in this paper. Carbon ionic liquid electrode (CILE) was prepared by mixing graphite powder and HPPF6 together and the CILE was characterized by scanning electron microscopy (SEM) and electrochemical methods. The electrochemical behaviors of adenosine on the CILE were studied carefully. Compared with the traditional carbon paste electrode (CPE), a small negative shift of the oxidation peak potential appeared with greatly increase of the oxidation peak current, which indicated the presence of ionic liquid in the carbon paste not only as the binder but also as the modifier and promoter. Under the optimal conditions the oxidation peak current increased with the adenosine concentration in the range from 1.0×10?6 mol/L to 1.4×10?4 mol/L with the detection limit of 9.1×10?7 mol/L (S/N=3) by differential pulse voltammetry. The proposed method was applied to the human urine samples detection with satisfactory results.  相似文献   

16.
A new electrochemical method was proposed for the determination of adenosine‐5′‐triphosphate (ATP) based on the electrooxidation at a molecular wire (MW) modified carbon paste electrode (CPE), which was fabricated with diphenylacetylene (DPA) as the binder. A single well‐defined irreversible oxidation peak of ATP appeared on MW‐CPE with adsorption‐controlled process and enhanced electrochemical response in a pH 3.0 Britton‐Robinson buffer solution, which was due to the presence of high conductive DPA in the electrode. The electrochemical parameters of ATP were calculated with the electron transfer coefficient (α) as 0.54, the electron transfer number (n) as 1.9, the apparent heterogeneous electron transfer rate constant (ks) as 2.67 × 10?5 s?1 and the surface coverage (ΓT) as 4.15 × 10?10 mol cm?2. Under the selected conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10?7 mol L?1 to 2.0 × 10?3 mol L?1 with the detection limit as 1.28 × 10?8 mol L?1 (3σ) by sensitive differential pulse voltammetry. The proposed method showed good selectivity without the interferences of coexisting substances and was successful applied to the ATP injection samples detection.  相似文献   

17.
A new strategy of three‐electrode system fabrication in polymer‐based microfluidic systems is described here. Standard lithography, hot embossing and UV‐assisted thermal bonding were employed for fabrication and assembly of the microfluidic chip. For the electrode design the gold working (WE) and counter electrodes (CE) are placed inside a main channel through which the sample solution passes. A silver reference electrode (RE) is embedded in a small side channel containing KCl solution that is continuously pushed into the main channel. In the present work, the overall electrochemical set up and its microfabrication is described. Conditions including silver ion concentration, cyclic voltammetry (CV) settings, and the flow rate of KCl solution in the RE channel were optimized. The electrochemical performance of the three‐electrode system was evaluated by CV and also by amperometric oxidation of ferro hexacyanide ([Fe(CN)6]4?) and ruthenium bipyridyl ([Ru(bipy)3]2+) at 400 mV and 1200 mV, respectively. CV analysis using ferri/ferro hexacyanide showed a stable, quasi‐reversible redox reaction at the electrodes with 96 mV peak separation and an anodic/cathodic peak ratio of 1. Amperometric analysis of the electrochemical species resulted in linear correlation between analyte concentration and current response in the range of 0.5–15 µM for [Fe(CN)6]4?, and 0–1000 µM for [Ru(bipy)3]2+. Upon the given experimental conditions, the limit of detection was found to be 3.15 µM and 24.83 µM for [Fe(CN)6]4? and [Ru(bipy)3]2+, respectively. As a fully integrated three‐electrode system that is fabricated on polymer substrates, it has great applications in microfluidic‐based systems requiring stable electrochemical detection.  相似文献   

18.
《Electroanalysis》2005,17(9):749-754
A sensitive electrochemical method for the determination of simvastatin (SV) was established, based on the enhanced oxidation of SV at a multi‐walled carbon nanotubes‐dihexadecyl hydrogen phosphate composite modified glassy carbon electrode (MWNTs‐DHP/GCE). The voltammetric studies showed that MWNTs instead of DHP or GCE could effectively catalyze the oxidation of SV. The dependence of oxidation current on SV concentration was explored under optimal conditions, which exhibited a good linear relationship in the range of 1.0×10?7–7.5×10?6 M. The detection limit of SV was also examined and a low value of 5.0×10?8 M was obtained for 5 min accumulation (σ=3). This electrode was applied to the detection of SV in drug forms and the results were in accordance with those obtained by UV spectroscopy.  相似文献   

19.
This paper reports the fabrication of Au nanoparticles (Au NPs)‐Ni‐Al layerd double hydroxide (LDH) composite film by one step electrochemical deposition on the surface of a glass carbon electrode from the mixture solution containing HAuCl4 and nitrate salts of Ni2+ and Al3+. Improved conductivity was obtained by Au NPs codeposited on LDH film. The synergic effect of LDHs and Au NPs dramatically improves the performance of L ‐cysteine electro‐oxidation, displaying low oxidation peak potential (0.16 V) and high current response. Thus the electrode was used to sense L ‐cysteine, showing good sensitivity and selectivity.  相似文献   

20.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号