首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interplay between inertia and elasticity is examined for transient free‐surface flow inside a narrow channel. The lubrication theory is extended for the flow of viscoelastic fluids of the Oldroyd‐B type (consisting of a Newtonian solvent and a polymeric solute). While the general formulation accounts for non‐linearities stemming from inertia effects in the momentum conservation equation, and the upper‐convected terms in the constitutive equation, only the front movement contributes to non‐linear coupling for a flow inside a straight channel. In this case, it is possible to implement a spectral representation in the depthwise direction for the velocity and stress. The evolution of the flow field is obtained locally, but the front movement is captured only in the mean sense. The influence of inertia, elasticity and viscosity ratio is examined for pressure‐induced flow. The front appears to progress monotonically with time. However, the velocity and stress exhibit typically a strong overshoot upon inception, accompanied by a plug‐flow behaviour in the channel core. The flow intensity eventually diminishes with time, tending asymptotically to Poiseuille conditions. For highly elastic liquids the front movement becomes oscillatory, experiencing strong deceleration periodically. A multiple‐scale solution is obtained for fluids with no inertia and small elasticity. Comparison with the exact (numerical) solution indicates a wide range of validity for the analytical result. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A spectral approach is proposed to determine the flow field of a thin film inside narrow channels of arbitrary shape. Although the method is easily extended to transient flow, only steady flow is considered here. The flow field is represented spectrally in the depthwise direction in terms of orthonormal shape functions, which together with the Galerkin projection lead to a system of ordinary differential equations that can be solved using standard methods. The method is particularly effective for nonlinear flow, including nonlinearities of geometrical or material origins. The validity of the proposed method is demonstrated for a flow with inertia, and, unlike the depth‐averaging method, is not limited to a flow at small Reynolds number. The problem is closely related to high‐speed lubrication flow. The validity of the spectral representation is assessed by examining the convergence of the method, and comparing it with the fully two‐dimensional finite‐element solution, and the widely used depth‐averaging method from shallow‐water theory. It is found that a low number of modes are usually sufficient to secure convergence and accuracy. The influence of inertia is examined on the velocity and pressure fields. The pressure distributions reflect excellent agreement between the low‐order spectral method and the finite‐element solution, even at moderately high Reynolds number. The depth‐averaging solution is unable to predict accurately (qualitatively and quantitatively) the high‐inertia flow. Comparison of the velocity field reflects the expected discrepancy in a boundary layer formulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The lubrication theory is extended for transient free‐surface flow of a viscous fluid inside three‐dimensional symmetric thin cavities of thickness that varies in the flow direction. The problem is first formulated for a cavity of arbitrary shape. The moving domain is mapped onto a rectangular domain at each time step of the computation. The pressure, which in this case is governed by the modified Laplace's equation, is expanded in a Fourier series in the spanwise direction. The expansion coefficients are obtained using the finite‐difference method. Only a few modes are usually needed to secure convergence. The flow behaviour is strongly influenced by the cavity thickness. The flows inside a straight, contracting, expanding, and modulated cavities are examined. It is found that while the evolution of the front is always monotonic with time, that of the velocity at the front can be oscillatory if the degree of contraction of the cavity (whether modulated or not) is significant. The velocity of the contact point along the lateral walls is usually larger than that at the front, leading to the straightening of the front. However, for modulated cavities, the front may advance at a faster rate, leading to its own undulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Smagorinsky‐based models are assessed in a turbulent channel flow simulation at Reb=2800 and Reb=12500. The Navier–Stokes equations are solved with three different grid resolutions by using a co‐located finite‐volume method. Computations are repeated with Smagorinsky‐based subgrid‐scale models. A traditional Smagorinsky model is implemented with a van Driest damping function. A dynamic model assumes a similarity of the subgrid and the subtest Reynolds stresses and an explicit filtering operation is required. A top‐hat test filter is implemented with a trapezoidal and a Simpson rule. At the low Reynolds number computation none of the tested models improves the results at any grid level compared to the calculations with no model. The effect of the subgrid‐scale model is reduced as the grid is refined. The numerical implementation of the test filter influences on the result. At the higher Reynolds number the subgrid‐scale models stabilize the computation. An analysis of an accurately resolved flow field reveals that the discretization error overwhelms the subgrid term at Reb=2800 in the most part of the computational domain. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A new regularization method is proposed for the Galerkin approximation of the incompressible Navier–Stokes equations with Q1/P0 element, by newly introducing a square‐type linear form into the variational divergence‐free constraint regularized with the global pressure jump (GPJ) method. The addition of the square‐type linear form is intended to eliminate the hydrostatic pressure mode appearing in confined flows, and to make the discretized matrix positive definite and then non‐singular without the pressure pegging trick. Effects of the free parameters for the regularization on the solutions are numerically examined with a 2‐D driven cavity flow problem. Furthermore, the convergences in the conjugate gradient iteration for the solution of the pressure Poisson equation are compared among the mixed method, the GPJ method and the present method for both leaky and non‐leaky 3‐D driven cavity flows. Finally, the non‐leaky 3‐D cavity flows at different Re numbers are solved to compare with the literature data and to demonstrate the accuracy of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This study examines theoretically the development of early transients for axisymmetric flow of a thin film over a stationary cylindrical substrate of arbitrary shape. The fluid is assumed to emerge from an annular tube as it is driven by a pressure gradient maintained inside the annulus, and/or by gravity in the axial direction. The interplay between inertia, annulus aspect ratio, substrate topography and gravity is particularly emphasized. Initial conditions are found to have a drastic effect on the ensuing flow. The flow is governed by the thin‐film equations of the ‘boundary‐layer’ type, which are solved by expanding the flow field in terms of orthonormal modes in the radial direction. The formulation is validated upon comparison with the similarity solution of Watson (J. Fluid Mech 1964; 20 :481) leading to an excellent agreement when only 2–3 modes are included. The wave and flow structure are examined for high and low inertia. It is found that low‐inertia fluids tend to accumulate near the annulus exit, exhibiting a standing wave that grows with time. This behaviour clearly illustrates the difficulty faced with coating high‐viscosity fluids. The annulus aspect is found to be influential only when inertia is significant; there is less flow resistance for a film over a cylinder of smaller diameter. For high inertia, the free surface evolves similarly to two‐dimensional flow. The substrate topography is found to have a significant effect on transient behaviour, but this effect depends strongly on inertia. It is observed that the flow of a high‐inertia fluid over a step‐down exhibits the formation of a secondary wave that moves upstream of the primary wave. Gravity is found to help the film (coating) flow by halting or prohibiting the wave growth. The initial film profile and velocity distribution dictate whether the fluid will flow downstream or accumulate near the annulus exit. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A new approach for the solution of the steady incompressible Navier–Stokes equations in a domain bounded in part by a free surface is presented. The procedure is based on the finite difference technique, with the non‐staggered grid fractional step method used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. In order to design an effective free solution scheme, we distinguish between flows dominated by surface tension and those dominated by inertia and viscosity. When the surface tension effect is insignificant we used the kinematic condition to update the surface; whereas, in the opposite case, we used the normal stress condition to obtain the free surface boundary. Results obtained with the improved boundary conditions for a plane Newtonian jet are found to compare well with the available two‐dimensional numerical solutions for Reynolds numbers, up to Re=100, and Capillary numbers in the range of 0≤Ca<1000. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Computational results for flow past a two‐dimensional model of a ram‐air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well‐proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier–Stokes equations in the primitive variables formulation. The Baldwin–Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck‐Y airfoil without a leading edge cut, for α=7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift‐to‐drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift‐to‐drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time‐averaged values are quite similar. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Solving the flow around objects with complex shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is needed. Time consuming meshing can be avoided when the solution algorithm can tackle grids that do not fit the shape of immersed objects. This work presents applications of a recently proposed immersed boundary—body conformal enrichment method to the solution of the flow around complex shaped surfaces such as those of a metallic foam matrix. The method produces solutions of the flow satisfying accurately Dirichlet boundary conditions imposed on the immersed fluid/solid interface. The boundary of immersed objects is defined using a level‐set function, and the finite element discretization of interface elements is enriched with additional degrees of freedom, which are eliminated at element level. The method is first validated in the case of flow problems for which reference solutions on body‐conformal grids can be obtained: flow around an array of spheres and flow around periodic arrays of cylinders. Then, solutions are shown for the more complex flow inside a metallic foam matrix. A multiscale approach combining the solution at the pore level by the immersed boundary method and the macro‐scale solution with simulated permeability is used to solve actual experimental configurations. The computed pressure drop as a function of the flow rate on the macro scale configuration replicating two experimental setups is compared with the experimental data for various foam thicknesses. Copyright © 2011 National Research Council Canada  相似文献   

12.
The lubrication theory is extended for transient free‐surface flow of a viscous fluid inside a three‐dimensional thin cavity. The problem is closely related to the filling stage during the injection molding process. The pressure, which in this case is governed by the Laplace's equation, is determined using the boundary element method. A fully Lagrangian approach is implemented for the tracking of the evolving free surface. The domain of computation is the projection of the physical domain onto the (x, y) plane. This approach is valid for simple and complex cavities as illustrated for the cases of a flat plate and a curved plate. It is found that the flow behavior is strongly influenced by the shape of the initial fluid domain, the shape of the cavity, and inlet flow pressure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The effects of Reynolds number on the physiological‐type of laminar pulsatile flow fields within the vicinity of mechanical ring‐type constriction in small pipes were studied numerically. The parameters considered are: the Reynolds number (Re) in the range of 50–1500; Strouhal number (St) in the range of 0.00156–3.98; Womersley number (Nw) from 0.0 to 50.0. The pulsatile flows considered were physiological‐type of simulated flows. Within a pulsating cycle, detailed flow characteristics were studied through the pulsating contours of streamline (ψ), vorticity (Ω), shear stress (τ) and isobar. The relations between the instantaneous flow rate (Q) and instantaneous pressure gradients (dp/dz) are observed to be elliptic. The relations between the instantaneous flow rate (Q) and pressure loss (Ploss) are quadratic. Linear relations were observed between the instantaneous flow rate (Q) and the maximum velocity, maximum vorticity and maximum shear stress. The Reynolds number of the flow in a pulsating cycle was found to have significant effects on the recirculation length and the pressure gradient within the pulsatile flow regime. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The lubrication theory is extended for transient free‐surface flow of a viscous fluid inside three‐dimensional cavities of general symmetric shape but of small thickness. The problem is closely related to the filling stage during the injection molding process. The moving domain is mapped onto a rectangular domain at each time step of the computation. A modified pressure is introduced, which in this case is governed by the Laplace's equation, and it is expanded in a Fourier series along the flow direction. The expansion coefficients are obtained using the finite‐difference method. This approach is valid for simple and complex cavities as illustrated for the cases of a flat plate and a curved plate. Only a few modes are needed to secure convergence in general. It is found that the flow behaviour is strongly influenced by the shape of the initial fluid domain, the shape of the cavity, cavity thickness, and the inlet flow. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents residual‐based turbulence models for problems with moving boundaries and interfaces. The method is developed via a hierarchical application of variational multiscale ideas and the models are cast in an arbitrary Lagrangian–Eulerian (ALE) frame to accommodate the deformation of domain boundaries. An overlapping additive decomposition of velocity and pressure fields into coarse and fine scale components leads to coarse and fine scale mixed‐field problems. The problem governing fine scales is subjected to a further decomposition of the fine scale velocity into overlapping components termed as fine scales level I and level II. In turn, in the bottom‐up integration of scales, the model for level II fine scales serves to stabilize the problem governing level I fine scales, and model for level I fields yields the turbulence models. From the computational perspective, the coarse scales are represented in terms of the standard Lagrange shape functions, whereas level I and level II scales are represented via quadratic and fourth order polynomial bubbles, respectively. Because of the bubble functions approach employed in the consistently derived fine scale models, the resulting method is free of any embedded or tunable parameters. The proposed turbulence models share a common feature with the LES models in that the largest scales in the flow are numerically resolved, whereas the subgrid scales are modeled. The method is applied to flow around a plunging airfoil at Re = 40,000, and results are compared with experimental and numerical data published in the literature. Also presented are the results for the plunging airfoil at Re = 60,000 to show the robustness and range of applicability of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The purpose of this paper is to validate a new highly parallelizable direction splitting algorithm. The parallelization capabilities of this algorithm are illustrated by providing a highly accurate solution for the start‐up flow in a three‐dimensional impulsively started lid‐driven cavity of aspect ratio 1 × 1 × 2 at Reynolds numbers 1000 and 5000. The computations are done in parallel (up to 1024 processors) on adapted grids of up to 2 billion nodes in three space dimensions. Velocity profiles are given at dimensionless times t = 4, 8, and 12; at least four digits are expected to be correct at Re = 1000. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a three‐dimensional (3D) solution algorithm for solving the sequential co‐injection moulding process. The flow of skin and core materials inside a rectangular cavity is investigated both numerically and experimentally. A 3D finite element flow analysis code is used to solve the governing equations of the non‐isothermal sequential co‐injection moulding. The predicted flow front behaviour is compared to the experimental observations for various skin/core volume ratio, injection speed, injection temperature, and core injection delay. Simulation results are in good agreement with experimental data and indicate correctly the trends in solution change when processing parameters are changing. Solutions are also shown for the filling of a spiral‐flow mould. The numerical approach is shown to predict the core expansion phase during which the flow front of core and skin materials advance together without breakthrough. Breakthrough phenomena is also predicted and the numerical solution is in good agreement with the experiment. Copyright © 2005 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

19.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The steady flow inside a spatially modulated channel is examined for shear‐thinning and shear‐thickening fluids. The flow is induced by the translation of the lower plate. The modulation amplitude is assumed to be small. A regular perturbation expansion of the flow field is used, coupled to a variable‐step finite‐difference scheme, to solve the problem. Convergence and accuracy assessment against finite‐volume calculations indicates that there is a significant range of validity of the perturbation approach. The influence of the wall geometry, inertia and non‐Newtonian effects are investigated systematically. In particular, the influence of the flow and fluid parameters is examined on the conditions for the onset of separation, vortex size and location. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号