首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Optical transient current spectroscopy (OTCS) has been used to investigate defects in the low-temperature-grown GaAs after postgrowth rapid thermal annealing (RTA). Two samples A and B were grown at 220°C and 360°C on (0 0 1) GaAs substrates, respectively. After growth, samples were subjected to 30 s RTA in the range of 500–800°C. Before annealing, X-ray diffraction measurements show that the concentrations of the excess arsenic for samples A and B are 2.5×1019 and 1×1019 cm−3, respectively. It is found that there are strong negative decay signals in the optical transient current (OTC) for the annealed sample A. Due to the influence of OTC strong negative decay signals, it is impossible to identify deep levels clearly from OTCS. For a comparison, three deep levels can be identified for sample B before annealing. They are two shallower deep levels and the so-called AsGa antisite defect. At the annealing temperature of 600°C, there are still three deep levels. However, their structures are different from those in the as-grown sample. OTC strong negative decay signals are also observed for the annealed sample B. It is argued that OTC negative decay signals are related to arsenic clusters.  相似文献   

2.
Al---Zr, Al---Nb, Al---Mo, Al---Ta and Al---W alloys were prepared by DC magnetron sputtering using an Al target with embedded heavy metals disks and substrate rotating around their own central axes and revolving around the central axes of the sputtering chamber. They were examined with X-ray diffraction (XD) of the Cu K, and Al---Ta alloys were also observed by transmission electron microscopy (TEM). Within the diffraction angles, 2τ = 20° ≈ 90°, XD patterns of the examined specimens were all typical of the amorphous structure. However, at the small angle region, 2τ < 10°, a number of sharp diffraction peaks appeared. The lattice spacing obtained from the diffraction peaks was linearly dependent on the inverse of the revolution period of the substrate during the sputter deposition. TEM images showed a layered structure which corresponded to the lattice spacing detected by XD. It is concluded that the superlattice-like structure appearing in the sputter-deposited alloy films arises from the compositional heterogeneity in the sputtered flux of atoms, which comes from the large non-uniformity of the target structure and sputtering conditions.  相似文献   

3.
Atomic resolution scanning tunnelling microscopy (STM) has been used to study the adsorption of Si on GaAs(001) surfaces, grown in situ by molecular beam epitaxy (MBE), with a view to understanding the incorporation of Si in δ-doped GaAs structures. Under the low-temperature deposition conditions chosen, the clean GaAs surface is characterized by a well-defined c(4×4) reflection high-energy electron diffraction (RHEED) pattern, a structure involving termination with two layers of As. Filled states STM images of this surface indicate that the basic structural unit, when complete, consists of rectangular blocks of six As atoms with the As-As bond in the surface layer aligned along the [110] direction. Deposition of <0.05 ML of Si at 400°C onto this surface shows significant disruption of the underlying structure. A series of dimer rows are formed on the surface which, with increasing coverage, form anisotropic "needle-like" islands which show no tendency to coalesce even at relatively high coverages (0.5 ML). The formation of these islands accompanies the splitting of the 1/2 order rods in the RHEED pattern along [110]. As the Si is known to occupy only Ga sites, the Si atoms displace the top layer As atoms of the c(4×4) structure, with the displaced As atoms forming dimers in a new top layer. The results are consistent with a recently proposed site exchange model and subsequent island formation for surfactant mediated epitaxial growth.  相似文献   

4.
Diffusion of Si-acceptors (Si occupying As sites) in δ-doped GaAs grown on GaAs(111)A has been investigated by secondary ion mass spectrometry (SIMS). We have measured the diffusion parameters in GaAs(111)A and found that they differ from those in GaAs(001). The diffusion coefficient in GaAs(111)A is smaller than that in GaAs(001) and the activation energy in GaAs(111)A is larger than that in GaAs(001). Furthermore, the diffusion mechanism of Si in GaAs(111)A has been investigated by photoluminescence; we have found that in p-type layers Si-donors (Si occupying Ga sites) diffuse easily to As sites. The activation energy of Si-acceptor diffusion is 2.74±0.11 eV. These results indicate that Si-acceptors are more stable than Si-donors.  相似文献   

5.
Strained layer CdS/ZnS superlattices have been grown on GaAs(0 0 1) by molecular-beam epitaxy using CdS and ZnS compound sources. The samples were investigated with special reference to their structural properties and lattice dynamics by means of X-ray diffraction and Raman spectroscopy. The results of four superlattices with different period length are discussed in detail. X-ray diffraction profiles show superlattice satellite peaks up to the fourth order indicating a high degree of periodicity. The lateral and in-depth homogeneity of the period length is also confirmed by Raman investigations. Folded longitudinal acoustic phonons in CdS/ZnS superlattices were observed for the first time. The experimental values agree very well with theoretical calculations based on the Rytov model and show the expected dependency on the superlattice period. The behaviour of the optical phonons is mainly determined by strain induced shifts caused by the high lattice mismatch (−7%) for this system. A good agreement between theoretical predictions and detected frequencies is obtained.  相似文献   

6.
Magnetoresistance of a Si atomic-layer-doped (δ-doped) GaAs is measured to study the transport properties of the δ-doped structure. The magnetoresistance decreases as the temperature is lowered and the depth of the δ-doped layer, i.e., the distance between the surface and the δ-doped layer, becomes less than 300 nm. Negative magnetoresistance is observed below 80 K in a sample having a doping density of 1.67×1012 cm−2 and a δ-doped layer depth of 40 nm. The conduction channel in the δ-doped structure consists of two parts, the quantized states in the conduction band and the impurity band. The origin of the negative magnetoresistance is suggested to be the conduction in the inhomogeneous potential due to localized impurity potential.  相似文献   

7.
Without the use of any extra surfactant or template, γ-MnOOH single crystalline nanowires were synthesized directly through the hydrothermal reaction between KMnO4 and toluene in distilled water at 180 °C for 24 h; and β-MnO2 single crystalline nanowires could be obtained just by calcination of the γ-MnOOH nanowires in air at 280 °C for 5 h. The as-prepared γ-MnOOH and β-MnO2 nanowires were characterized by X-ray powder diffraction, atomic absorption spectroscopy, Fourier transformed infrared spectroscopy, scanning electron microscope, transmission electron microscope, high-resolution transmission electron microscope and selected area electron diffraction.  相似文献   

8.
Calcium carbonate precipitates are prepared from a solution of CaCl2 and K2CO3 in the presence of polyacrilic acid. The effect of polyacrilic acid incorporation in the [25–80 °C] temperature range on crystal morphologies and CaCO3 precipitated polymorph concentrations are investigated using scanning electron microscopy and X-ray diffraction quantitative microstructural and phase analysis. Large changes in morphology and phase proportions are observed in the presence of polyacrylic acid, which strongly depend on the solution temperature. While crystallization of vaterite is favoured in the presence of polyacrilic acid up to 50 °C, it is largely destabilized at higher temperatures. Our process also enables the elaboration of particles in the range 10–20 nm.  相似文献   

9.
GaAs surface cleaning using atomic hydrogen (H·) prior to molecular beam epitaxy has been compared to the conventional thermal treatment of GaAs surfaces. The surface morphology was observed in real time using in situ scanning microprobe reflection high-energy electron diffraction (μ-RHEED). GaAs surfaces have been found to be uniformly cleaned at temperatures of about 400°C using the H· treatment. On the other hand, a local initiation of the desorption of the oxide layer has been observed during the conventional thermal treatment at about 580°C.  相似文献   

10.
We report the effect of annealing on the properties of amorphous hydrogenated silicon carbide thin films. The samples were deposited onto different substrates by plasma enhanced chemical vapor deposition at temperatures between 300 and 350 °C. The gaseous mixture was formed by silane and methane, at the ‘silane starving plasma regime’, and diluted with hydrogen. Rutherford backscattering and Fourier transform infrared spectrometry were used, respectively, to determine the atomic composition and chemical bonds of the samples. The film’s structure was analyzed by means of X-ray absorption fine structure and X-ray diffraction. For temperatures higher than 600 °C, amorphous silicon carbide films annealed under inert atmosphere (Ar or N2) clearly changed their structural and compositional properties due to carbon loss and oxidation, caused by the presence of some oxygen in the annealing system. At 1000 °C, crystallization of the films becomes evident but only stoichiometric films deposited on single crystalline Si[1 0 0] substrates presented epitaxial formation of SiC crystals, showing that the crystallization process is substrate dependent. Films annealed in high-vacuum also changed their structural properties for annealing temperatures higher than 600 °C, but no traces of oxidation were observed or variations in their silicon or carbon content. At 1200 °C the stoichiometric films are fully polycrystalline, showing the existence of only a SiC phase. The XANES signal of samples deposited onto different substrates and annealed under high-vacuum also show that crystallization is highly substrate dependent.  相似文献   

11.
Cu has been reported to diffuse rapidly in GaAs at low temperatures (2.3×10-5 cm2 s-1 at 600°C). The rapid diffusion is attributed to the interstitial movement of Cu atoms. The present investigation was undertaken to examine preferential diffusion of Cu+ along dislocations and grain boundaries in GaAs. The experiments consisted of depositing 64Cu on a GaAs water surface, annealing in vacuum, and observing the Cu distribution by autoradiography. From these observations no preferential diffusion along dislocations or grain boundaries was detected in SI GaAs annealed between 600 and 1000°C. In the sample annealed above 800°C, the deposited Cu reacted with the GaAs forming a liquid on the sample surface, which solidified into complex Cu-Ga-As compounds. The liquid also produced Cu-rich pipes which extended through the GaAs wafer.  相似文献   

12.
Strain-compensated quantum cascade lasers operating at room temperature   总被引:1,自引:0,他引:1  
Quantum cascade (QC) lasers based on strain-compensated InxGa(1−x)As/InyAl(1−y)As grown on InP substrate using molecular beam epitaxy is reported. The epitaxial quality is demonstrated by the abundant narrow satellite peaks of double-crystal X-ray diffraction and cross-section transmission electron microscopy of the QC laser wafer. Laser action in quasi-continuous wave operation is achieved at λ≈3.6–3.7μm at room temperature (34°C) for 20 μm×1.6 mm devices, with peak output powers of 10.6 mW and threshold current density of 2.7 kA/cm2 at this temperature.  相似文献   

13.
Data are presented on the luminescence characteristics of InGaP/InAlP heterostructures with oxidized InAlP cladding layers grown by metalorganic chemical vapor deposition. The structures are grown on GaAs substrates and consist of either a 20 nm thick In0.5Ga0.5P quantum well or a 0.75 μm InGaP layer sandwiched between two InAlP bulk barriers or between two 10-period In0.5Al0.5P/InxGa1−xP strain-modulated superlattice heterobarriers, where x varies from 0.5 to 0.45 and the period of the superlattice is 3 nm. The top InAlP cladding layer of the InAlP/InGaP heterostructures is oxidized for 2–5.5 h at 500°C in an ambient of H2O vapor saturated in a N2 carrier gas. Photoluminescence and time-resolved photoluminescence studies at room temperature show that, as a result of the oxidation of a portion of the top InAlP cladding layer, the photoluminescence emission intensity and lifetime from the InGaP QWs increase significantly.  相似文献   

14.
InP films were grown by chemical beam epitaxy using trimethylindium (TMI) and pure phosphine (PH3) in a flow control mode with hydrogen as the carrier gas, with the TMI flow rate fixed at 3 SCCM. Substrate temperatures were varied between 505 and 580°C and V/III ratios from 3 to 9. InP layers with high optical quality (intense and narrow excitonic transition lines) and high crystalline quality (narrow and symmetric X-ray diffraction peaks) could be grown only within a narrow parameter window around a substrate temperature of 545°C (δTs ≤ 25°C) and a V/III ratio of 5.5 (δ(V/III) ≤ 2). Carrier densities of 8 × 1014 cm-3 with mobilities of 70000 cm2/V.s measured at 77 K were obtained for growth conditions close to the edge of this parameter window towards low V/III ratios. The growth rate of inP was also clearly at its maximum in the given parameter window. Leaving the window, by changing either the growth temperature or the V/III ratio, significantly decreased the growth rate. This reduced growth rate was accompanied by a degradation in the crystalline quality. We also demonstrate that for higher TMI flow the parameter window shifts to higher growth temperatures. The InP could be doped effectively with Si in the range from 9 × 1015 to 3 × 1018 cm-3.  相似文献   

15.
Single crystals of MnGa2Te4 were grown from the melt using the directional freezing technique. They crystallize in the monoclinic system, a=11.999(3), b=11.999(3), c=24.922(6) Å, β=104.01(2)°, Z=16 MnGa2Te4 units, space group C2/c. The structure was solved by direct methods and refined to Rw=0.035 for 791 observed reflections and to Rw=0.062 for 3067 independently measured reflections. Te atoms form an arrangement which is a superlattice of anion lattice of β-Cu2HgI4. On the contrary, the same model does not conform cation lattice, because 1/3 of metal atoms occupy positions displaced from tetrahedral sites.  相似文献   

16.
Effectively atomically flat interfaces over a macroscopic area (200 μm diameter) have been achieved in GaAs/Al0.7Ga0.3As quantum wells (QWs) with well widths of 3.6-12 nm grown on (411)A GaAs substrates by molecular beam epitaxy (MBE) for the first time. A single and very narrow photoluminescence peak (FWHM, full width at half maximum, is 6.1 meV) was observed at 717.4 nm for the QW with a well width of 3.6 nm at 4.2 K. The linewidth is comparable to that of growth-interrupted QWs grown on (100)-oriented GaAs substrates by MBE. A 1.5 μm thick Al0.7Ga0.3As layer with good surface morphology also could be grown on (411)A GaAs substrates in the entire growth temperature region of 580-700°C, while rough surfaces were observed in Al0.7Ga0.3As layers simultaneously grown on (100) GaAs substrates at 640-700°C. These results indicate that the surface of GaAs and Al0.7Ga0.3As grown on the (411)A GaAs substrates are extremely flat and stable on the (411)A plane.  相似文献   

17.
The growth and morphological features of MOCVD TiOxNy films have been characterized to evaluate the effect of various process parameters on film growth. XRD analysis of the films deposited at 600°C on Si(1 1 1) and mica show a TiN(1 1 1) peak at 2θ=36.6°, but only anatase peaks are detected below 550°C. Above 650°C, both anatase and rutile peaks are detected. The presence of ammonia is not effective below 550°C as the deposited film is mostly TiO2. Also, ammonia does not play any role in homogeneous nucleation in the gas phase, as evident by the deposition of anatase/rutile particles above 650°C. The following changes in the morphological features are observed by varying process parameters. By increasing the ratio of titanium-isopropoxide to ammonia flow, the cluster shape changes from angular to rounded; dilution of the flow results in larger elongated clusters; increase in flow rate at constant precursor to ammonia ratios, changes the cluster shape from rounded to elongated and the cluster size deceases. Deposition at higher temperatures results in finer clusters with a slower growth rate and eventually results in a very thin film with particle deposition at 650°C and above.  相似文献   

18.
InGaAs/InAlAs in-plane superlattices (IPSLs) composed of InAs/GaAs and InAs/AlAs monolayer superlattices were grown using molecular beam epitaxy. The substrates were misoriented (110) InP tilting 3° toward the [00 ] direction. We grew half monolayers of AlAs and GaAs and single monolayers of InAs alternately, keeping regular arrays of single monolayer steps. The structures were evaluated by transmission electron microscopy (TEM). In a transmission electron diffraction pattern from the ( 10) cross-section, we observed two types of superstructure spot pairs double-positioned in the [001] direction, indicating the formation of the intended IPSL structures. In a cross-sectional TEM dark-field image, we observed the InGaAs/InAlAs superlattice structures formed almost in the [001] direction. The mean period of the superlattices was approximately 4 nm, which was comparable to the terrace width expected from the substrate tilt angle. However, IPSL structures were not completely formed, i.e., the lateral interfaces meandered along the growth direction, and partial disorderings were often observed. The photoluminescence spectrum from the IPSL had a peak corresponding to the InGaAs (2 nm thick)/InAlAs (2 nm thick) superlattice in addition to a peak corresponding to the In0.5Al0.25Ga0.25As alloy.  相似文献   

19.
We correlate the Si concentration measured by secondary ion mass spectrometry (SIMS) and the net donor concentration in GaAs:Si grown by atomic layer molecular beam epitaxy (ALMBE); Si was supplied during: (a) both the As and the Ga subcycles, (b) the As subcycle, and (c) the Ga subcycle; the layers were grown at temperatures in the 300-530°C range. The results show that Si incorporation and its compensation depend on the Si-supply scheme and that the extent of compensation decreases with the growth temperature. We also study the deep levels in the ALMBE GaAs grown under the above conditions. Our results show the occurrence of M1, M3 and M4 levels with concentrations that are: (i) essentially independent of both the Si supply scheme and the ALMBE growth temperature, (ii) close to those of MBE GaAs grown at 600°C, and (iii) up to 2 orders of magnitude lower than that of GaAs prepared by molecular beam epitaxy (MBE) at similar temperatures.  相似文献   

20.
Several orientations of GaAs substrates, including (1 0 0), (4 1 1), (1 1 1) and (5 1 1) have been annealed in a metalorganic vapour phase epitaxy (MOVPE) horizontal reactor at different annealing temperatures and under different trimethyl-bismuth (TMBi) flux. Surface morphology of the annealed GaAs substrates was investigated by means of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show islands formation on all the studied samples. The density and size of Bi islands vary greatly with annealing temperature and TMBi flow. For different substrate orientations, the activation energies were deduced from Arrhenius plot of island density. Except for (5 1 1) oriented GaAs, all the studied orientations show the same activation energy of 1.8 eV. For low annealing temperature 420 °C, and under different Bi flux, each oriented substrate shows a specific behaviour. For higher temperatures 700 °C and above Bi islands are totally removed and the substrates are smooth. Surface change of (1 0 0) oriented GaAs substrate was in situ monitored by laser reflectometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号