首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Samples of polycrystalline calcite were impregnated with solutions of malonic acid of three concentrations (5 x 10(-2), 5 x 10(-3) , and 5 x 10(-4) M) and different pH values (6.00, 7.00, and 8.00). The impregnation was carried out at room temperature to evaluate the adsorption of malonate ion in the calcite surface to optimize the conditions for possible application on limestone and marble in cultural heritage materials. The affinity of the malonate ion was determined through the potentiometric measurement of the surface charge and the corresponding adsorbed amounts by titration, Raman spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate effective adsorption of the malonate ion on the surface at a pH value close to the point of zero charge (pHpzc approximately 8.20) and changes in some surface morphological properties such as the pore shape and the pore size distribution. The presence of a malonate adsorptive layer on calcite generates an interface interaction potential that may influence the reaction and transport mechanisms within the medium.  相似文献   

2.
The adsorption of dicarboxylic acids by kaolinite and montmorillonite at different pH conditions was investigated using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) and ex situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The sorption capacity of montmorillonite was greater than that of kaolinite. Adsorption of dicarboxylic acids (succinic acid, glutaric acid, adipic acid, and azelaic acid) was the highest at pH 4 as compared with those at pH 7 and 9. These results indicate that sorption is highly pH-dependent and related to the surface characteristics of minerals. The aliphatic chain length of the dicarboxylic acids highly influenced the sorption amount at acidic pH, regardless of the clay mineral species: succinic acid [HOOC(CH2)2COOH] < glutaric acid [HOOC(CH2)3COOH] < adipic acid [HOOC(CH2)4COOH] < azelaic acid [HOOC(CH2)7COOH]. With in situ ATR-FTIR analysis, most samples tend to have outer-sphere adsorption with the mineral surfaces at all tested pHs. However, inner-sphere coordination between the carboxyl groups and mineral surfaces at pH 4 was dominant from DRIFT analysis with freeze-dried complex samples. The complexation types, inner- or outer-sphere, depended on dicarboxylic acid species, pH, mineral surfaces, and solvent conditions. From the experimental data, we suggest that organic acids in an aqueous environment prefer to adsorb onto the test minerals by outer-sphere complexation, but inner-sphere complexation is favored under dry conditions. Thus, organic acid binding onto clay minerals under dry conditions is stronger than that under wet conditions, and we expect different conformations and aggregations of sorbed organic acids as influenced by complexation types. In the environment, natural organic material (NOM) may adsorb predominantly on positively charged mineral surfaces at the aqueous interface, which can convert into inner-sphere coordination during dehydration. The stable NOM/mineral complexes formed by frequent wetting-drying cycles in nature may resist chemical/microbial degradation of the NOM, which will affect carbon storage in the environment and influence the sorption of organic contaminants.  相似文献   

3.
For biomineralization processes, the interaction of the surface of calcite crystals with organic molecules is of particular importance. Especially, biologically controlled biomineralization as in exoskeletons of mollusks and echinoderms, e.g., sea urchin with single-crystal-like spines and shells,1-3 requires molecular control of seed formation and growth process. So far, experiments showing the obvious influence of organic molecules on the morphology and habit of calcite crystals have demonstrated the molecular dimension of the interaction.4-7 Details of the kinetics of growth and dissolution of mineral surfaces influenced by additives are available,8,9 but other experimental data about the structure of the organic/inorganic interface on the atomic scale are rare. On the other hand, complicated organic macromolecules which are involved in biomineralization are numerous, with only a small fraction solved in structure and function so far.10-13 Therefore, model systems have to be designed to provide a basic understanding for the interaction process.14 Using grazing incidence X-ray diffraction combined with molecular modeling techniques, we show that glycine molecules order periodically on the calcite (104) face in competition with the solvent water when exposed to an aqueous solution of the most simple amino acid. In contrast to the general concept of the charge-matching fit of organic molecules on mineral surfaces,4,14 glycine is not attached to the calcite surface directly but substitutes for water molecules in the second hydration layer.  相似文献   

4.
Structural characteristics of synthesized ordered mesoporous silicas MCM-41, MCM-48 and SBA-15 were studied using XRD, nitrogen adsorption and FTIR methods. Pure water and mixtures with water/benzene and water/chloroform-d adsorbed onto silicas were studied by 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial liquids. Concentrated aqueous suspensions of MCM-48 and SBA-15 were studied by thermally stimulated depolarization current (TSDC) method. Benzene and chloroform-d can displace a portion of water to broad pores from the pore walls and from narrower pores, especially in the case of a large excess of an organic solvent. This process is accompanied by diminution of both interaction energy of water with an adsorbent surface and freezing temperature depression of adsorbed water. The effect of nonpolar benzene on pore water is much stronger than that of weakly polar chloroform-d. Modifications of the Gibbs-Thomson relation to describe the freezing point depression of mixtures of immiscible liquids confined in pores allow us to determine distribution functions of sizes of structures with unfrozen pore water and benzene. Former address: Pisarzhevskii Institute of Physical Chemistry, 31 Prospect Nauki, Kiev, Ukraine  相似文献   

5.
The structural and adsorption characteristics of polymer adsorbent LiChrolut EN and the behavior of adsorbed water and water/organic mixtures were studied using adsorption, microcalorimetry, transmission and scanning electron microscopy, mass spectrometry, infrared spectroscopy, 1H NMR spectroscopy with layer-by-layer freezing-out of liquids (190-273 K), and thermally stimulated depolarization current method (90-265 K). This adsorbent is characterized by large specific surface area (approximately 1500 m2/g) and pore volume (0.83 cm3/g) with a major contribution of narrow pores (R<10 nm) of a complicated shape (long hysteresis loop is in nitrogen adsorption-desorption isotherm). The adsorbent includes aromatic and aliphatic structures and oxygen-containing functionalities and can effectively adsorb organics and water/organic mixtures. On co-adsorption of water and organics (dimethyl sulfoxide, chloroform, methane), there is a weak influence of one on another adsorbate due to their poor mixing in pores. Weakly polar chloroform displaces a fraction of water from narrow pores. These effects can explain high efficiency of the adsorbent in solid-phase extraction of organics from aqueous solutions. The influence of structural features of several carbon and polymer adsorbents on adsorbed nitrogen, water and water/organics is compared on the basis of the adsorption and 1H NMR data.  相似文献   

6.
The rates of dissolution of calcitic Carrara marble have been reported to be significantly reduced in alkaline pH (pH 8.25) at 25 degrees C in the presence of (1-hydroxyethylidene)-1,1 diphosphonic acid (HEDP). The adsorption takes place at the calcite/water interface at the double layer through the interaction of charged surface species with the charged solution species of the adsorbate. The present work focused on obtaining a better understanding of the interaction of the calcite surface with HEDP. Calculations were performed according to the triple layer model, assuming the formation of surface complexes between the charged surface species of calcite and the species of HEDP dominant at pH 8.25. According to the model, the adsorbed species are located at the inner Helmholtz plane of the electrical double layer. Strong lateral interactions between the adsorbed species were suggested and were corroborated from the calculation of the respective energy, which was equal to 69 kJ mol(-1). The adsorption isotherm was consistent with the proposed model at low surface coverage values, while discrepancies between the values experimentally measured and the predicted were found at higher adsorbate concentrations. The deviations from the predicted values were attributed to the fact that HEDP adsorption on calcite resulted in the formation of multiple layers. The model explained adequately the changes in the zeta-potential values of calcite in the presence of HEDP in the solution which resulted in charge reversal upon adsorption.  相似文献   

7.
Reactions of ZrCl(4) and single or mixed linear dicarboxylic acids bearing methyl or azide groups lead to highly stable isoreticular metal-organic frameworks (MOFs) with content-tunable, accessible, reactive azide groups inside the large pores. These Zr-based MOFs offer an ideal platform for pore surface engineering by anchoring various functional groups with controlled loadings onto the pore walls via the click reaction, endowing the MOFs with tailor-made interfaces. Significantly, the framework and crystallinity of the functionalized MOFs are well-retained, and the engineered pore surfaces have been demonstrated to be readily accessible, thus providing more opportunities for powerful and broad applications of MOFs.  相似文献   

8.
N2静态吸附容量法的测定结果表明,磷钨酸铯盐(CsxH3-xPW12O40)的孔窝和孔分布与x值的大小相关。x〈1.5的CsxH3-xPW12O40孔容相近,孔分布近似;当x〉1.5时,CsxH3-xPW12O40的孔主要是孔径小于10nm的中孔和微孔,平均孔径及孔容随x的增加而增大。SEM和TEM的观测结果表明,CsxH3-xPW12O40的孔是微细粒子堆积留下的空隙孔,可能不存在晶内孔。  相似文献   

9.
Microporous silicon membranes, fabricated by lithographic patterning and wet and dry silicon etching processes, were used to create arrays of micro-scale interfaces between two immiscible electrolyte solutions (muITIES) for ion-transfer voltammetry. These membranes served the dual functions of interface stabilization and enhancement of the rate of mass-transport to the interface. The pore radii were 6.5 microm, 12.8 microm and 26.6 microm; the pore-pore separations were ca. 20- to 40-times the pore radii and the membrane thickness was 100 microm. Deep reactive ion etching (DRIE) was used for pore drilling through the silicon, which had been previously selectively thinned by potassium hydroxide etching. DRIE produces hydrophobic fluorocarbon-coated internal pore walls. The small pore sizes and large pore-pore separations used resulted in steady-state voltammograms for the transfer of tetramethylammonium cation (TMA(+)) from the aqueous to the organic phase, whereas the reverse voltammetric sweeps were peak-shaped. These asymmetric voltammograms are consistent with the location of the ITIES at the aqueous side of the silicon membrane such that the organic phase fills the micropores. Comparison of the experimental currents to calculated currents for an inlaid disc micro-interface revealed that the interfaces were slightly recessed, up to 10 microm (or 10% of the pore length) in one case. Facilitated ion transfer, with an organic-phase ionophore, confirmed the location of the organic phase within the pores. These microporous silicon membranes offer opportunities for various analytical operations, including enhancing the rate of mass transport to ITIES-based sensing devices and stabilization of the ITIES for hydrodynamic applications.  相似文献   

10.
Resonantly enhanced surface second harmonic generation (SHG) measurements carried out at pH 7 and room temperature were performed to study how surface-bound carboxylic acid and methyl ester functional groups control the interaction of chromate ions with fused silica/water interfaces. These functional groups were chosen because of their high abundance in humic and fulvic acids and related biopolymers commonly found in soils. They were anchored to the silica surface using organosilane chemistry to avoid competing complexation processes in the aqueous solution as well as competitive adsorption of the organic compounds and chromate. The SHG experiments were carried out at room temperature and pH 7 while using environmentally representative chromate concentrations ranging from 1 x10(-6) to 2 x 10(-4) M. Chromate is found to bind to the acid- and ester-functionalized silica/water interfaces in a reversible fashion. In contrast to the plain silica/water interface, chromate binding studies performed on the functionalized silica/water interfaces show S-shaped adsorption isotherms that can be modeled using the Frumkin-Fowler-Guggenheim (FFG) model. This model predicts a coverage-dependent binding constant of K(ads) x exp(gtheta). Values for g are found to be 3.2(2), 2.1(2), and 1.3(2) for the carboxylic acid-, the ester-, and the nonfunctionalized silica/water interfaces, respectively, and are consistent with stabilizing lateral adsorbate-adsorbate interactions among the Cr(VI) species adsorbed to the functionalized surfaces. The FFG model allows for the parametrization of the solid-liquid partition coefficient and chromate retardation factors in silica-rich soil particles whose surfaces contain organic adlayers rich in carboxylic acid and methyl ester groups. The straightforward model presented here predicts that chromate retardation increases by up to 200% when carboxylic acid functional groups are present at the silica/water interface. Increases up to 50% are predicted for methyl ester-containing organic adlayers, and the retardation factor remains effectively near unity for the plain silica/water interface (no siloxanes present).  相似文献   

11.
煤中可溶有机质对煤的孔隙结构及甲烷吸附特性影响   总被引:1,自引:0,他引:1  
采用四氢呋喃对临涣7煤和祁南3煤进行微波辅助抽提,进行了原煤和残煤等温吸附实验和低温氮气吸附测试,对比分析了抽提前后原煤和残煤的甲烷吸附量和比表面积、孔分布情况,并理论测算煤中可溶有机质吸附溶解甲烷量.结果表明,残煤的甲烷吸附能力低于原煤;抽提后,煤的比表面积和总孔体积增大,平均孔径减少,影响煤吸附气体能力的主要孔径为1.7~5.0 nm,且该范围内的孔数有不同程度的增加;压力为0.1~5.0 MPa时,两煤样中可溶有机质吸附溶解的甲烷量分别为0.45~4.22 mL/g、0.69~4.99 mL/g,最大吸附量分别占到原煤最大吸附量的30%和38%.分析认为,煤中可溶有机质占据部分煤中孔隙,影响煤孔隙结构,同时,在压力的作用下,甲烷可以溶解和吸附煤中可溶有机质.  相似文献   

12.
This paper reports Monte Carlo simulations of the adsorption or intrusion in cylindrical silica nanopores. All the pores are opened at both ends towards an external bulk reservoir, so that they mimic real materials for which the confined fluid is always in contact with the external phase. This realistic model allows us to discuss the nature of the filling and emptying mechanisms. The adsorption corresponds to the metastable nucleation of the liquid phase, starting from a partially filled pore (a molecular thick film adsorbed at the pore surface). On the other hand, the desorption occurs through the displacement at equilibrium of a gas/liquid hemispherical interface (concave meniscus) along the pore axis. The intrusion of the non-wetting fluid proceeds through the invasion in the pore of the liquid/gas interface (convex meniscus), while the extrusion consists of the nucleation of the gas phase within the pore. In the case of adsorption, our simulation data are used to discuss the validity of the modified Kelvin equation (which is corrected for both the film adsorbed at the pore surface and the curvature effect on the gas/liquid surface tension).  相似文献   

13.
The self-assembly of nonionic surfactants in the cylindrical pores of SBA-15 silica with a pore diameter of 8 nm was studied by small-angle neutron scattering (SANS) at different solvent contrasts. The alkyl ethoxylate surfactants C(10)E(5) and C(12)E(5) exhibit strong aggregative adsorption in the pores as indicated by the sigmoidal shape of the adsorption isotherms. The SANS intensity profiles can be represented by a sum of two terms, one accounting for diffuse scattering from surfactant aggregates in the pores and the other for Bragg scattering from the pore lattice of the silica matrix. The Bragg reflections are analyzed with a form factor model in which the radial density profile of the surfactant in the pore is approximated by a two-step function. Diffuse scattering is represented by a Teubner-Strey-type scattering function which indicates a preferred distance between adsorbed surface aggregates in the pores. Our results suggest that adsorption starts with formation of discrete surface aggregates which increase in number and eventually merge to interconnected patches as the plateau value of the adsorption isotherm is approached. A grossly different behavior, viz. formation of micelles as in solution, is found for the maltoside surfactant C(10)G(2), in agreement with the observed weak adsorption of this surfactant in SBA-15.  相似文献   

14.
Surface functionalization controls local environments and induces solvent‐like effects at liquid–solid interfaces. We explored structure–property relationships between organic groups bound to pore surfaces of mesoporous silica nanoparticles and Stokes shifts of the adsorbed solvatochromic dye Prodan. Correlating shifts of the dye on the surfaces with its shifts in solvents resulted in a local polarity scale for functionalized pores. The scale was validated by studying the effects of pore polarity on quenching of Nile Red fluorescence and on the vibronic band structure of pyrene. Measurements were done in aqueous suspensions of porous particles, proving that the dielectric properties in the pores are different from the bulk solvent. The precise control of pore polarity was used to enhance the catalytic activity of TEMPO in the aerobic oxidation of furfuryl alcohol in water. An inverse relationship was found between pore polarity and activity of TEMPO in the pores, demonstrating that controlling the local polarity around an active site allows modulating the activity of nanoconfined catalysts.  相似文献   

15.
Membrane emulsification of unrefined pumpkin seed oil was performed using microengineered flat disc membranes on top of which a paddle blade stirrer was operated to induce surface shear. The membranes used were fabricated by galvanic deposition of nickel onto a photolithographic template and contained hexagonal arrays of uniform cylindrical pores with a diameter of 19 or 40 μm and a pore spacing of 140 μm. The uniformly sized pumpkin seed oil drops with span values less than 0.4 were obtained at oil fluxes up to 640 L m−2 h−1 using 2 wt.% Tween 20 (polyoxyethylene sorbitan monolaurate) or 2–10 wt.% Pluronic F-68 (polyoxyethylene–polyoxypropylen copolymer) as an aqueous surfactant solution. Pumpkin seed oil is rich in surface active ingredients that can be adsorbed on the membrane surface, such as free fatty acids, phospholipids, and chlorophyll. The adsorption of these components on the membrane surface gradually led to membrane wetting by the oil phase and the formation of uniform drops was achieved only for dispersed phase contents less than 10 vol.%. At high oil fluxes, Pluronic F-68 molecules present at a concentration of 2 wt.% could not adsorb fast enough, on the newly formed oil drops, to stabilise the expanding interface.  相似文献   

16.
MCM-41 and MSU-H mesoporous silicas were successfully functionalized with hydrogen bonds forming organic moieties, which have been proven by elemental analysis. Both moieties, based on oxygen and nitrogen containing groups, were introduced with high efficiency—the amount of carbon in all cases exceeded 10 % and the elemental ratios suggest binding to the surface through two or three Si–O–Si bonds. Hydrogen peroxide adsorption was conducted in its aqueous solutions and the amount adsorbed was determined using the ferric thiocyanate method. Results are presented as a function of hydrogen peroxide concentration in aqueous solution from 5 to 30 %. Both functionalized silicas show increased adsorption capacity when compared with that of their unfunctionalized analogues. The surface modified with nitrogen-based organic moiety revealed better adsorption properties as well as higher resistance against oxidation. MSU-H silica, due to its larger pore diameter, provides more space to bind hydrogen peroxide molecules and thus was found to have higher adsorption capacity: it adsorbed up to four times more hydrogen peroxide than MCM-41.  相似文献   

17.
In the presence of sufficient concentrations of water, stable, hydrated hydronium ions are formed in the pores and at the surface of solid acids such as zeolites. For a medium‐pore zeolite, such as zeolite MFI, hydrated hydronium ions consist of eight water molecules and have an effective volume of 0.24 nm3. In their presence, larger organic molecules can only adsorb in the portions of the pore that are not occupied by hydronium ions. As a consequence, the available pore volume decreases proportionally to the concentration of the hydronium ions. The higher charge density (the increasing ionic strength) that accompanies an increasing concentration of hydronium ions leads to an increase in the activity coefficients of the adsorbed substrates, thus, weakening the interactions between the organic part of the molecules and the zeolite and favoring the interactions with polar groups. The quantitative understanding of these interactions makes it possible to link a collective property such as hydrophilicity and hydrophobicity of zeolites to specific interactions on molecular level.  相似文献   

18.
Heat-induced interfacial aggregation of a whey protein isolate (WPI) with a high content of beta-lactoglobulin (>92%), previously adsorbed at the oil-water interface, was studied by means of interfacial dynamic characteristics performed in an automatic drop tensiometer. Protein concentration in aqueous bulk phase ranging between 1x10(-1) and 1x10(-5) % wt/wt was studied as a variable. The experiments were carried out at temperatures ranging from 20-80 degrees C with different thermal regimes. During the heating period, competition exists between the effect of temperature on the film fluidity and the increase in mechanical properties associated with the interfacial gelation process. Interfacial crystallisation of food polar lipids (monopalmitin, monoolein, and monolaurin) previously adsorbed at the oil-water interface, was studied by interfacial dynamic characteristics (interfacial tension and surface dilational properties). The temperature, ranging between 40 and 2 degrees C, and the lipid concentration in aqueous oil phase, ranging between 1x10(-2) and 1x10(-4) % wt/wt, were studied as variables. Significant changes in interfacial dynamic characteristics associated with interfacial lipid crystallisation were observed as a function of lipid concentration in the bulk phase. Interfacial crystallisation of food polar lipids (monopalmitin, monoolein, and monolaurin) at the air-water interface, was studied by pi-A isotherms performed in a Langmuir trough coupled with Brewster angle microscopy (BAM). A condensation in monoglyceride monolayers towards lower molecular area was observed as the temperature decreased. This effect was attributed to lipid crystallisation at lower temperatures. BAM images corroborated the effect of temperature on the monolayer structure, as a function of the monoglyceride type.  相似文献   

19.
The properties of materials confined in porous media are important in scientific and technological aspects. Topology, size, and surface polarity of the pores play a critical role in the confinement effects, however, knowledge regarding the guest–pore interface structure is still lacking. Herein, we show that the molecular mobility of water confined in periodic mesoporous organosilicas (PMOs) is influenced by the polarity of the organic moiety. Multidimensional solid‐state NMR spectroscopy directly probes the spatial arrangement of water inside the pores, showing that water interacts either with only the silicate layer or with both silicate and organic layers depending on the alternating surface polarity. A modulated and a uniform pore filling mode are proposed for different types of PMOs.  相似文献   

20.
The distribution of Hf, Zr and Nb between aqueous solutions of mineral acids and solutions of 1-phenyl-3-methyl-4-acylpyrazolones-5 (acyl=acetyl, ethoxycarbonyl, butyryl, capronyl, capryl and benzoyl) in various organic solvents has been studied. The dependence of the distribution ratio of metal on the acidity of the aqueous phase, the analytical concentrations of reagents and metals, and on the organic solvent was investigated. The composition of the complex extracted is MeP4 for Hf and Zr. The conditions for the separation of Zr, Hf and Nb are defined, and a comparison is made with extractions by means of thenoyltrifluoroacetone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号