首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
Copper nanoparticles with different structural properties and effective biological effects may be fabricated using new green protocols. The control over particle size and in turn size-dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for the synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. Biological methods involve the use of plant extracts, bacteria, and fungi. Commendable work has been done regarding the synthesis and stability of copper nanoparticles. There is a need to summarize the behavior of copper nanoparticles in different media under various conditions. Here, a complete list of the literature on the synthesis of copper nanoparticles, their properties, stabilizing agents, factors affecting the morphology, and their applications is presented. The importance of copper nanoparticles compared to other metal nanoparticles are due to high conductivity. Methods for the synthesis of copper nanoparticles, including green protocols using plants and micro-organisms compared chemical methods, have also been reviewed.  相似文献   

2.
高分子和无机磁性粒子间因其特性的差异,较难进行均匀的复合与杂化,而原位生成法可以制得磁性粒子均匀复合的结构,较好地解决这一问题.本文对近年来国内外采用原位生成法制备磁性复合粒子的方法进行了比较和综述.  相似文献   

3.
In this article, innovative applications of amphiphilic triblock and pentablock copolymers in the synthesis of gold nanoparticles are reported. The synthesis of gold nanoparticles is performed using two methods. In the first method, micellar aggregates of block copolymers and AuCl4? ions directly react in water; the nanoparticles obtained by this method are variable in size and are associated with copolymer aggregates. In the second method, two processes take place simultaneously: the aggregation of block copolymers and the reduction of Au (III) by the copolymers to form nanoparticles. In contrast with the first method, in this case, the nanoparticles obtained are located inside the copolymer aggregates. In both methods of synthesis, the block copolymers act simultaneously as reducing and stabilizing agents. To understand the role of copolymer aggregates in the synthesis of nanoparticles, molecular simulation methods are used. The gold nanoparticles, copolymer aggregates, and nanocomposite systems are characterized using transmission electron microscopy and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3069–3079  相似文献   

4.
Long YM  Zhao QL  Zhang ZL  Tian ZQ  Pang DW 《The Analyst》2012,137(4):805-815
Fluorescent nanoparticles have attracted much attention over the last two decades. Due to the size- and composition-dependent optical and electrical properties, fluorescent nanoparticles have been emphasized in electronic, optical and biomedical applications. Till now, many kinds of methods have been developed to fabricate diverse fluorescent nanoparticles, which include pyrolysis, template synthesis, hydrothermal synthesis, microemulsion, electrochemical methods and so on. Among them, electrochemical methods are favored for relatively good controllability, ease of operation and mild reaction conditions. By adjusting the applied potential, current, components of the electrolyte and other relevant parameters, the fluorescent nanoparticles could be electrochemically manufactured with tunable sizes, compositions and surface structure, which allows for the modification of electronic and optical properties. Therefore, electrochemical methods are regarded as important means in preparing fluorescent nanoparticles. This review focuses on the recent progress in electrochemical fabrications of fluorescent nanoparticles (together with their optical properties and some applications in optoelectronics and biomedicine).  相似文献   

5.
The synthesis and study of metallic nanoparticles are of continued and significant interest, with applications in materials science, catalysis, and medicine. The properties of metallic nanoparticles depend strongly on their particle size, shape, and interparticle distances. It is therefore desirable for the synthesis of metallic nanoparticles to be controlled for specific shapes and sizes. The rapid development in this research area has attracted intense interest from researchers with diverse expertise, and numerous methods towards the synthesis of monodisperse nanoparticles have been reported. In this Focus Review, we provide an overview of recent progress in the development of the template synthesis of metallic nanoparticles using closed‐shell structures, including biological molecules/assemblies and cage molecules.  相似文献   

6.
The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.  相似文献   

7.
This Minireview systematically examines optical properties of silver nanoparticles as a function of size. Extinction, scattering, and absorption cross-sections and distance dependence of the local electromagnetic field, as well as the quadrupolar coupling of 2D assemblies of such particles are experimentally measured for a wide range of particle sizes. Such measurements were possible because of the development of a novel synthetic method for the size-controlled synthesis of chemically clean, highly crystalline silver nanoparticles of narrow size distribution. The method and its unique advantages are compared to other methods for synthesis of metal nanoparticles. Synthesis and properties of nanocomposite materials using these and other nanoparticles are also described. Important highlights in the history of the field of metal nanoparticles as well as an examination of the basic principles of plasmon resonances are included.  相似文献   

8.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

9.
Summary: Paper describes basic characteristics of synthesis and properties of aliphatic polyesters used for tissue engineering. Described is also synthesis of polyester containing block copolymers suitable for surface modification. Described are methods used for scaffold fabrication with required porosity. In particular, presented are methods according to which scaffolds are made from prefabricated polyester micro- and nanoparticles.  相似文献   

10.
Recent advances in the synthesis of colloidal metal nanoparticles of controlled sizes and shapes that are relevant for catalyst design are reviewed. Three main methods, based on colloid chemistry techniques in solution, i.e., chemical reduction of metal salt precursors, electrochemical synthesis, and controlled decomposition of organometallic compounds and metal-surfactant complexes, are used to synthesize metal nanoparticles. Their catalytic activity and selectivity depend on the shape, size and composition of the metal nanoparticles, and the support effect, as shown for many reactions in quasi-homogeneous and heterogeneous catalysis. A specially designed type of thermally stable catalysts--"embedded" metal catalysts, in which metal nanoparticles are isolated by porous support shells so that metal sintering is effectively avoided at high temperatures, are also introduced. The utilization of pre-prepared colloidal metal nanoparticles with tuned size, shape and composition as components of designed catalysts opens up new field in catalysis.  相似文献   

11.
《印度化学会志》2023,100(1):100866
The advancement in nanotechnology, nanoparticles are reported to have applications in various fields. Their positive role in the environment, especially in plant ecosystem, is extensively studied nowadays. Among the metal nanoparticles, the silver nanoparticles (AgNPs) are receiving special attention because of their ability to increase the growth and yield in many crops. Although many studies are found that shows the toxic effects of AgNPs, the perspective of the present review is to collect the information about their positive roles in growth and yield enhancement of crops. During this overview, there are many methods of synthesizing silver AgNPs nanoparticles discussed, including chemical, bacterial-induced, fungal-derived and plant-mediated synthesis. There are numerous approaches towards the synthesis of AgNPs, including biological and chemical methods. Because of the use of reducing agents such as sodium borohydride in the synthesis of AgNPs, conventional methods have opened a path that threatens environmental sustainability. The chemical synthesis of silver colloids is the consequence of increased aggregation as storage time increases. AgNPs possess unique properties which has many applications such as antimicrobial and anticancer activities. It was concluded that cautious and sensible use of nanotechnology can warrant food security through boosting agricultural production. This review is aimed at providing an insight into the syntheses of AgNPs, its significant applications in various fields, and characterization techniques involved.  相似文献   

12.
This review is based on the literature describing several methods for the synthesis of gallium oxide nanoparticles. Several techniques have been used for the synthesis of gallium oxide Ga2O3 nanoparticles. Gallium oxide Ga2O3 nanoparticles have been synthesized from different precursors. Different synthetic methods and different precursors produce nanoparticles which vary in size and shape. Over a dozen of synthetic methods for preparation of gallium oxide Ga2O3 nanoparticles together with the characterization techniques used have been discussed.  相似文献   

13.
Published data on the application of silver nanoparticles to spectrophotometry are summarized. Data on methods of synthesis of silver nanoparticles and their optical properties are presented. The main approaches to the spectrophotometric determination of substances using silver nanoparticles are discussed. Examples of the determination of metal ions, anions, and organic compounds are given.  相似文献   

14.
Gold nanoparticles have been employed in biomedicine since the last decade because of their unique optical, electrical and photothermal properties. Present review discusses the microbial synthesis, properties and biomedical applications of gold nanoparticles. Different microbial synthesis strategies used so far for obtaining better yield and stability have been described. It also includes different methods used for the characterization and analysis of gold nanoparticles, viz. UV–visible spectroscopy, Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, scanning electron microscopy, ransmission electron microscopy, atomic force microscopy, electron dispersive X ray, X ray photoelectron spectroscopy and cyclic voltametry. The different mechanisms involved in microbial synthesis of gold nanoparticles have been discussed. The information related to applications of microbially synthesized gold nanoparticles and patents on microbial synthesis of gold nanoparticles has been summarized.  相似文献   

15.
Over the past few decades, the resistance of different pathogenic bacteria to various antibiotics has gradually increased. In order to solve the problems of this modern era, metal nanoparticles have attracted more attention than ever. Copper has been recognized as a non-toxic, safe inorganic material and cheap antibacterial or antifungal agent, showing potential antibacterial effect in many biomedical fields. This interest has accelerated the generation of many novel methods for the synthesis of copper-based nanoparticles. Due to the non-toxicity and safety requirements of antibacterial agents, the recent green synthesis of copper-based nanoparticles is gradually replacing the traditional methods. In addition, the antibacterial mechanism of copper-based nanoparticles has provoked great curiosity. This review summarizes the synthetic methods, the possible antibacterial mechanisms and applications of copper-based nanoparticles. Additionally, the application prospects of copper-based nanoparticle antibacterial agent in biomedical applications and clinical field have been described and discussed.  相似文献   

16.
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust–Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical–physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure–activity correlation in the frame of their applications in the biomedical and biotechnology sectors.  相似文献   

17.
The methods for synthesis of hybrid nanoparticles based on sulfides, oxides, and carbides of heavy and transition metals were considered. The problem of the influence of the method of synthesis of the hybrid nanoparticles on their atomic structure, morphology of the nanomaterials, and functional properties was analyzed. The areas of practical use of the hybrid nanoparticles were proposed.  相似文献   

18.
金纳米颗粒是近年研究的一种热门材料。介绍了金纳米颗粒主要的制备方法,包括化学还原法,两相法,晶种生长法以及模板法,并总结了金纳米粒子在生物医学、传感器、催化剂、电化学等领域的应用进展。  相似文献   

19.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

20.
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号