首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have investigated the structural, mechanical and lattice dynamical properties of ZrW2 and HfW2 compounds in cubic C15 (space group Fd-3m), hexagonal C14 (space group P63/mmc) and C36 (space group P63/mmc) phases using generalized gradient approximation within the plane-wave pseudo-potential density functional theory. We have found that ZrW2 and HfW2 in cubic C15 phase are the most stable among the considered phases. From calculated elastic constants, it is shown that all phases are mechanically stable according to the elastic stability criteria. The related mechanical properties, such as bulk, shear and Young moduli, Poisson’s ratio, Debye temperature and hardness have been also calculated. The results show that ZrW2 and HfW2 compounds are ductile in nature with respect to the B/G and Cauchy pressure analysis. The phonon dispersion curves, phonon density of states and some thermodynamic properties are computed and discussed exhaustively for considered phases.  相似文献   

2.
Using the first-principles density-functional theory within the generalized gradient approximation (GGA), we have investigated the structural, elastic, mechanical, electronic, and optical properties and phase transition of CuInO2. Structural parameters including lattice constants and internal parameter, pressure effects and phase transition pressure were calculated. We have obtained the elastic coefficients, bulk modulus, shear modulus, Young's modulus and Poisson's ratio. We find that two phases of CuInO2 are indirect band gap semiconductors (F–Γ and H–Γ for 3R and 2H, respectively). Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity have been obtained for radiations of up to 30 eV.  相似文献   

3.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

4.
The structural, elastic and electronic properties of BaZnO2 under pressure are investigated by the plane wave pseudopotential density functional theory (DFT). The calculated lattice parameters and unit cell volume of BaZnO2 at the ground state are in good agreement with the available experimental data and other theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B, shear modulus G, B/G, Poisson’ s ratio σ, Debye temperature Θ and aggregate acoustic velocities VP and VS are systematically investigated. It is shown that BaZnO2 maintains ductile properties under the applied pressures. Analysis for the calculated elastic constants has been made to reveal the mechanical stability and mechanical anisotropy of BaZnO2. At the ground state, the calculated compressional and shear wave velocities are 8.26 km/s and 1.81 km/s, respectively, and the Debye temperature Θ is 240.8 K. The pressure dependences of the density of states and the bonding property of BaZnO2 are also investigated.  相似文献   

5.
6.
We have studied structural, electronic, elastic and dynamical properties of NiSi2 by employing the plane wave pseudopotential method based on density functional theory within the local density approximation. The calculated lattice constant, bulk modulus and first-order pressure derivative of the bulk modulus are reported and compared with earlier available experimental and theoretical calculations. Numerical first-principles calculations of the elastic constants were used to calculate C11, C12 and C44 for NiSi2. The calculated electronic band structure has been compared with angle-resolved photoemission spectroscopy experimental data along the [100] and [111] symmetry directions. A linear response approach to density functional theory is used to derive the phonon dispersion curves and phonon partial density of states. Atomic displacement patterns for NiSi2 at the Γ, X and L symmetry points are also presented.  相似文献   

7.
Lishi Ma  Runyue Li 《哲学杂志》2013,93(27):2406-2424
Abstract

Systematic investigations of phase stability and mechanical properties of C15-type ZrM2 (M = Cr, Mo and W) Laves phases were performed using first-principles calculations. The formation enthalpies of ZrM2 are in good agreement with the theoretical and experimental values. The elastic properties, including elastic constants and moduli, Poisson’s ratio and B/G, were discussed. The elastic anisotropy was also investigated via the anisotropy indexes (AU, AZ, Ashear and Acomp), the anisotropy of shear modulus and the 3D construction of bulk and Young’s moduli. The elastic anisotropy of ZrM2 is in order of ZrCr2 < ZrMo2 < ZrW2. The variations in the shear modulus and hardness show similar trends with increasing values from ZrCr2 to ZrW2. The electronic structures for these C15-type Laves phases were analysed to obtain deeper understanding of chemical bonds and phase stabilities. Finally, the sound velocities and Debye temperatures were also investigated.  相似文献   

8.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

9.
We report Cu-NQR results on Ge-doped heavy-fermion superconductor CeCu2(Si1–x Ge x )2 (0<x0.2) and undoped Ce0.99Cu2.02Si2. The main effect of the Ge doping is considered to be a negative pressure, since the strength of hybridization decreases by the Ge doping. With increasing x, the dynamical characteristics of the magnetic order at x=0 change to more static ones which suggests a localized regime above x0.25. From the derived Tx phase diagram, it is suggested that the magnetic and the superconducting phases are almost degenerate in undoped CeCu2Si2. An exotic interplay between the magnetism characterized by the slow fluctuations and the superconductivity is implied in the region of small x.  相似文献   

10.
SJ Levett  CD Dewhurst  DMcK Paul 《Pramana》2002,58(5-6):913-917
We have performed extensive small-angle neutron scattering (SANS) diffraction studies of the vortex lattice in single crystal YNi2B2C for B‖c. High-resolution SANS, combined with a field-oscillation vortex lattice preparation technique, allows us to separate Bragg scattered intensities from two orthogonal domains and accurately determine the unit cell angle, β. The data suggest that upon increasing field there is a finite transition width where both low- and high-field distorted hexagonal vortex lattice phases, mutually rotated by 45°, coexist. The smooth variation of diffracted intensity from each phase through the transition corresponds to a redistribution of populations between the two types of domains.  相似文献   

11.
In this work, density functional theory calculations on the structural, mechanical, and lattice dynamical properties of Re2C within ReB2‐type structure are reported. The generalized gradient approximation has been used for modeling exchange–correlation effects. We have predicted the lattice constants, bulk modulus, bond distances, elastic constants, shear modulus, Young's modulus, Poisson's ratio, hardness, Debye temperature, and sound velocities of this compound. Furthermore, the band structure, phonon dispersion curves and corresponding density of states are computed. The obtained results are in good agreement with the available experimental and other theoretical data. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa.  相似文献   

13.
Faruk Toksoy 《哲学杂志》2013,93(28):2469-2483
Abstract

By applying ab initio calculation within density functional theory (DFT), we study the structure parameters, electronic band structure, elastic coefficients, polycrystalline elastic properties, anisotropy factors and Debye temperature of ferroelectric and paraelectric phases of LiTaO3 within the generalised gradient approximation at ambient pressure. The atomic structure in both phases is fully relaxed and the lattice constant, angle and atomic positions are well consistent with experimental values. The computed single-crystal elastic coefficients indicate that mechanical stability of LiTaO3 in both phases is confirmed using the generalised Born criteria. The shear, bulk and Young’s modulus, Poisson’s ratio, and Vickers hardness were computed according to theoretical elastic constants by Voight–Reuss–Hill method. Several anisotropy factors and indexes are computed to illustrate mechanical anisotropy. Both phases are shown to be weakly anisotropic. The Debye temperature is estimated using the longitude and transverse elastic wave velocity of the ideal polycrystalline LiTaO3 aggregates. We have found that LiTaO3 in both phases has an indirect energy band gap. The differences in the electronic structure and density of states for both phases are quite small. Our results indicate that the mechanical and bonding properties of both phases are very similar. The obtained results were compared with the available experimental and theoretical values.  相似文献   

14.
We present a study of magnetization measurements performed on the single crystals of YNi2B2C and LuNi2B2C. For both the compounds, we find flux jumps in magnetisation values in the respective field regions, where the structural transitions in the flux line lattice symmetry have been reported in these systems via the small angle neutron scattering experiments. The magnetisation hysteresis loops and the AC susceptibility measurements show pronounced peak effect as well as second magnetisation peak anomaly for both YNi2B2C and LuNi2B2C. Based on these results, a vortex phase diagram has been constructed for YNi2B2C forH∥c depicting different glassy phases of the vortex matter.  相似文献   

15.
J. Sun ¶  B. Jiang 《哲学杂志》2013,93(29):3133-3144
Ab initio calculations have been used to investigate the phase stability, mechanical properties and electronic structure of ZrCr2 Laves phase compounds, based on the method of augmented plane waves plus local orbitals with the generalized gradient approximation. The calculated lattice constants for the C15, C36 and C14 structures are in good agreement with experimental values. The calculation of heats of formation showed that C15 is a ground-state phase, whereas C36 is an intermediate phase and C14 the high-temperature phase. The elastic constants and elastic moduli for the C15 structure were calculated systematically and compared with experiments and previous theoretical calculations. The intrinsic and extrinsic stacking fault energies are found to be 112 and 98?mJ?m?2, respectively. The equilibrium separations between Schockley are also predicted using the calculated elastic moduli and stacking fault energies. Finally, the calculated electronic structures of these Laves phases are discussed based on these results.  相似文献   

16.
The structural, elastic and electronic properties of Ti2SiN were studied by first-principle calculations. The calculated bond lengths of Ti-Si and Ti-C are 2.65 and 2.09 Å, respectively. The results show Ti2SiN is mechanically stable, and its bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio μ and anisotropy factor A are determined to be 182 GPa, 118 GPa, 291 GPa, 0.233 and 1.57, respectively. The calculated electronic structure indicates that Ti2SiN is anisotropic and conductive.  相似文献   

17.
To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young’s modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.  相似文献   

18.
We investigate the structural, phase transition and elastic properties of SnO2 in the rutile-type, pyrite-type, ZrO2-type and cotunnite-type phases by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are well consistent with the available experimental and other theoretical data. Also, we find that the rutile→pyrite, pyrite→ZrO2 and ZrO2→cotunnite phase transition occur at 12.9, 59.1 and 111.1 GPa, which are in better agreement with the experimental results than those of Gracia et al. (2007). Moreover, we obtain the pressure dependences of elastic constants for the four structures.  相似文献   

19.
Based on density functional theory, we have studied the structural stability, elastic, mechanical, and lattice dynamical properties of BeB2, NaB2, and CaB2 compounds in AlB2, OsB2, and ReB2 structures, respectively. Generalized gradient approximation has been used for modeling exchange-correlation effects. Our calculations indicate that ReB2, AlB2, and OsB2 structures are energetically the most stable for BeB2, NaB2, and CaB2 compounds, respectively. The results show that these structures are both mechanically and dynamically stable. The bulk modulus, elastic constants, shear modulus, Young’s modulus, Poisson’s ratio, Debye temperature, sound velocities, and anisotropic factors are also calculated and discussed. Furthermore, the phonon dispersion curves and corresponding phonon density of states are presented. Our structural and some other results are in agreement with the available experimental and theoretical data.  相似文献   

20.
The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties – including elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, anisotropy indexes, Pugh’s criterion, elastic wave velocities and Debye temperature – have been predicted. Temperature and pressure dependence of some macroscopic properties – including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature – have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号