首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper presents an adaptive feedback control scheme for the synchronization of the chaotic system consisting of Van der Pol oscillators coupled to linear oscillators with cubic term when the parameters of the master system are unknown and different with the those of the slave system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two slightly mismatched chaotic systems asymptotically synchronized. This method is efficient and easy to implement. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

2.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

3.
This paper discusses a new energy resource chaotic system. It investigates basically dynamical behaviors of this new system. It also addresses the synchronization problem of two energy resource systems in the presence of different unknown system parameters. Based on Lyapunov stability theory, an adaptive control law is derived to make the states of two energy resource systems with different unknown system parameters asymptotically synchronized. Numerical simulations are given to validate the synchronization approach.  相似文献   

4.
Synchronization of Genesio chaotic system via backstepping approach   总被引:9,自引:0,他引:9  
Backstepping design is proposed for synchronization of Genesio chaotic system. Firstly, the control problem for the chaos synchronization of nominal Genesio systems without unknown parameters is considered. Next, an adaptive backstepping control law is derived to make the error signals between drive Genesio system and response Genesio system with an uncertain parameter asymptotically synchronized. Finally, the approach is extended to the synchronization problem for the system with three unknown parameters. The stability analysis in this article is proved by using a well-known Lyapunov stability theorem. Note that the approach provided here needs only a single controller to realize the synchronization. Two numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

5.
This paper investigates the chaos synchronization of two hyperchaotic systems. Based on Lasalle invariance principle, adaptive schemes are derived to make two unidirectional coupling and mutual coupling hyperchaotic systems asymptotically synchronized whether the parameters are given or uncertain, and unknown parameters are identified simultaneously in the process of synchronization. Numerical simulations of hyperchaotic Chen systems are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

6.
Song Zheng 《Complexity》2016,21(5):131-142
Synchronization and control of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this article, we investigate the problem of impulsive synchronization for the complex‐variable delayed chaotic systems with parameters perturbation and unknown parameters in which the time delay is also included in the impulsive moment. Based on the theories of adaptive control and impulsive control, synchronization schemes are designed to make a class of complex‐variable chaotic delayed systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Sufficient conditions are derived to synchronize the complex‐variable chaotic systems include delayed impulses. To illustrate the effectiveness of the proposed schemes, several numerical examples are given. © 2014 Wiley Periodicals, Inc. Complexity 21: 131–142, 2016  相似文献   

7.
This letter presents chaos synchronization problem of two different hyperchaotic systems when the parameters of drive and response systems are fully unknown or uncertain. Based on Lyapunov stability theory, an adaptive control law and a parameter update rule for unknown parameters are derived such that two different high dimensional chaotic systems are to be synchronized. Hyperchaotic Chen system and Second-harmonic generation (SHG) system are taken as an illustrative example to show the effectiveness of the proposed method.  相似文献   

8.
This paper presents two different hyperchaotic secure communication schemes by using generalized function projective synchronization (GFPS), where the drive and response systems could be synchronized up to a desired scaling function matrix. The unpredictability of the scaling functions can additionally enhance the security of communication. First, a hyperchaotic secure communication scheme applying GFPS of the uncertain Chen hyperchaotic system is proposed. The transmitted information signal is modulated into the parameter of the Chen hyperchaotic system in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical Chen hyperchaotic systems with unknown parameter asymptotically synchronized; thus, the uncertain parameter of the receiver system is identified. The information signal can be recovered accurately by the estimated parameter. Secondly, another secure communication scheme by the coupled GFPS of the Chen hyperchaotic system is introduced. The information signal transmitted can be extracted exactly through simple operation in the receiver. The corresponding theoretical proofs and numerical simulations demonstrate the validity and feasibility of the proposed hyperchaotic secure communication schemes.  相似文献   

9.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

10.
This work investigates the chaos anti-synchronization between two different dimensional chaotic systems with fully unknown parameters via added-order. Based on the Lyapunov stability theory, the adaptive controllers with corresponding parameter update laws are designed such that the two different chaotic systems with different dimensions can be synchronized asymptotically. Finally, two illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

12.
The paper discusses the optimal control for the chaos synchronization of Rössler systems with complete uncertain parameters during finite and infinite time intervals. Based on the Liapunov–Bellman technique, optimal control laws are derived from the conditions that ensure asymptotic stability of the error dynamical system and minimizes the cost transfer of this system from arbitrary state to its equilibrium state. The derived control laws make the states of two identical Rössler systems asymptotically synchronized. Some special cases are introduced. Important numerical simulation is included to show the effectiveness of the optimal synchronization technique.  相似文献   

13.
一类非线性系统的自适应反步控制   总被引:2,自引:0,他引:2  
研究一类带有未知常数参量的非线性系统的镇定及自适应控制器设计问题,提出了一类非线性系统参数估计器设计及自适应反步控制器设计的新方法.构造出Lyapunov函数, 并给出闭环系统全局渐近稳定的新的充分条件.例子表明了所获方法的有效性.  相似文献   

14.
This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.  相似文献   

15.
In this paper, an adaptive control scheme is proposed for the synchronization of two single-degree-of-freedom oscillators with unknown parameters. We only assume that the master system has the bounded solutions, which is generally satisfied for chaotic systems. Unlike the existing literature, the boundedness of the states of the slave system with control input is not necessarily known in advance. The boundedness of the controlled states is rigorously proved. The unknown parameters not only in the slave system but also in the master system are estimated by designing adaptive laws. By choosing appropriate Lyapunov function and employing Barbalat’s lemma, it is theoretically shown that the synchronization errors can converge to zero asymptotically. Finally, two illustrative examples are provided to demonstrate the effectiveness of the proposed adaptive control design.  相似文献   

16.
This study addresses the synchronization and adaptive synchronization problems of nuclear spin generator (NSG) systems with unknown system parameters. We show that the NSG system can be synchronized by using drive-response systems. Adaptive control law is applied to achieve the state synchronization of two identical NSG systems. Lyapunov direct method of stability is used to prove the asymptotic stability of solutions for the error dynamical system. Numerical simulation is used to show the effectiveness of the proposed control schemes.  相似文献   

17.
This paper deals with the problem of robust synchronization for a class of unidirectional coupled RCL-shunted Josephson junction (RCLSJ) models. A nonlinear controller is proposed based on variable structure control technique to ensure that these coupled RCLSJ models with different parameters can be asymptotically synchronized even when uncertainties are present in the coupled system. Finally, a comparative example is given to emphasize the simplicity and robustness of the proposed method.  相似文献   

18.
针对多输入多输出非线性最小相位系统,把自适应模糊控制和自适应模糊辨识结合起来,提出了一种自适应模糊控制方案.设计辨识器用来辨识系统的未知部分;然后由跟踪误差和辨识误差给出了参数调节规律,两种误差同时调节参数改善了系统性能.模糊逻辑系统用来估计未知函数.控制方案保证了系统的稳定性,实现了有界跟踪.仿真结果表明了该方案的可行性.  相似文献   

19.
研究一类n阶、相对阶为n-m(n为任意自然数,m≤n为非负整数)参数不确定系统的输出反馈自适应镇定控制设计问题.所给出的控制器适用于相对阶为n-m的n阶系统.通过引入一个新型的3n+2m阶动态补偿器,构造性地给出了输出反馈自适应镇定控制器的显式表达.所设计的控制器使得闭环系统所有信号有界或渐近稳定.  相似文献   

20.
Due to the unpredictability of the scaling factor of projective synchronization in coupled partially linear systems, it is hard to know for sure the terminal state of the synchronized dynamics. In this paper, a simple adaptive linear feedback control method is proposed for controlling the scaling factor onto a desired value, based on the invariance principle of differential equations. Firstly, we prove the synchronizability of the proposed simple adaptive projective synchronization control method from the viewpoint of mathematics. Then, two numerical examples are presented to illustrate the applications of the derived results. Finally, we propose a communication scheme based on the adaptive projective synchronization of the Lorenz chaotic system. Numerical simulation shows its feasibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号