首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the coexistence of symmetric non-Birkhoff periodic orbits of C(1) reversible monotone twist mappings on the cylinder. We prove the equivalence of the existence of non-Birkhoff periodic orbits and that of transverse homoclinic intersections of stable and unstable manifolds of the fixed point. We derive the positional relation of symmetric Birkhoff and non-Birkhoff periodic orbits and obtain the dynamical ordering of symmetric non-Birkhoff periodic orbits. An extension of the Sharkovskii ordering to two-dimensional mappings has been carried out. In the proof of various properties of the mappings, reversibility plays an essential role. (c) 2002 American Institute of Physics.  相似文献   

2.
杨科利 《物理学报》2016,65(10):100501-100501
本文研究了耦合不连续系统的同步转换过程中的动力学行为, 发现由混沌非同步到混沌同步的转换过程中特殊的多吸引子共存现象. 通过计算耦合不连续系统的同步序参量和最大李雅普诺夫指数随耦合强度的变化, 发现了较复杂的同步转换过程: 临界耦合强度之后出现周期非同步态(周期性窗口); 分析了系统周期态的迭代轨道,发现其具有两类不同的迭代轨道: 对称周期轨道和非对称周期轨道, 这两类周期吸引子和同步吸引子同时存在, 系统表现出对初值敏感的多吸引子共存现象. 分析表明, 耦合不连续系统中的周期轨道是由于局部动力学的不连续特性和耦合动力学相互作用的结果. 最后, 对耦合不连续系统的同步转换过程进行了详细的分析, 结果表明其同步呈现出较复杂的转换过程.  相似文献   

3.
In this paper we analyze the existence of the periodic orbits of the static, spherically symmetric Einstein–Yang–Mills Equations by using the qualitative theory of the ordinary differential equation. We prove that there are no periodic orbits restricted to some invariant set of codimension 1. Furthermore if there is a periodic orbit out of this invariant set, then there must be other periodic orbits, which are symmetric to the first one. We also have results on the non–existence of periodic orbits when the cosmological constant is negative.  相似文献   

4.
Paul阱中共线三离子体系的经典动力学   总被引:5,自引:2,他引:3       下载免费PDF全文
施磊  段宜武  冯芒  朱熙文  方细明 《物理学报》1998,47(8):1248-1257
研究了在Paul阱囚禁场赝势作用下共线构形的三离子体系经典动力学特性.尽管这是一个非线性体系,但不存在混沌,即体系在任何能量下运动都是规则的,而相空间则由两个轨迹为对称和反对称周期(或准周期)轨道的KAM不变环面构成.体系的两条最简单的周期轨道S和A的周期随能量E的下降而增大,并在E趋于体系的最小值Emin=3.0时分别为反对称和对称谐振动. 关键词:  相似文献   

5.
We study the forms of the orbits in a symmetric configuration of a realistic model of the H(2)O molecule with particular emphasis on the periodic orbits. We use an appropriate Poincare surface of section (PSS) and study the distribution of the orbits on this PSS for various energies. We find both ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are still nonescaping orbits around stable periodic orbits. We study in detail the forms of the various periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams. (c) 2001 American Institute of Physics.  相似文献   

6.
We present a method for proving the existence of symmetric periodic, heteroclinic or homoclinic orbits in dynamical systems with the reversing symmetry. As an application we show that the Planar Restricted Circular Three Body Problem (PCR3BP) corresponding to the Sun-Jupiter-Oterma system possesses an infinite number of symmetric periodic orbits and homoclinic orbits to the Lyapunov orbits. Moreover, we show the existence of symbolic dynamics on six symbols for PCR3BP and the possibility of resonance transitions of the comet. This extends earlier results by Wilczak and Zgliczynski [12]. Electronic Supplementary Material: Supplementary material is available in the online version of this article at An erratum to this article is available at .  相似文献   

7.
We investigate the existence of several families of symmetric periodic solutions as continuation of circular orbits of the Kepler problem for certain symmetric differentiable perturbations using an appropriate set of Poincaré-Delaunay coordinates which are essential in our approach. More precisely, we try separately two situations in an independent way, namely, when the unperturbed part corresponds to a Kepler problem in inertial cartesian coordinates and when it corresponds to a Kepler problem in rotating coordinates on ?3. Moreover, the characteristic multipliers of the symmetric periodic solutions are characterized. The planar case arises as a particular case. Finally, we apply these results to study the existence and stability of periodic orbits of the Matese-Whitman Hamiltonian and the generalized Størmer model.  相似文献   

8.
The double lunar swing-by orbits are a special kind of orbits in the Earth-Moon system.These orbits repeatedly pass through the vicinity of the Moon and change their shapes due to the Moon’s gravity.In the synodic frame of the circular restricted three-body problem consisting of the Earth and the Moon,these orbits are periodic,with two close approaches to the Moon in every orbit period.In this paper,these orbits are revisited.It is found that these orbits belong to the symmetric horseshoe periodic families which bifurcate from the planar Lyapunov family around the collinear libration point L3.Usually,the double lunar swing-by orbits have k=i+j loops,where i is the number of the inner loops and j is the number of outer loops.The genealogy of these orbits with different i and j is studied in this paper.That is,how these double lunar swing-by orbits are organized in the symmetric horseshoe periodic families is explored.In addition,the 2n lunar swing-by orbits(n≥2)with 2n close approaches to the Moon in one orbit period are also studied.  相似文献   

9.
汪秉宏 《物理学报》1988,37(1):77-86
从可逆保面积映象偶周期轨道线性Jacobi矩阵的一般结构,讨论了对称周期轨道的两种分歧行为。给出可逆保面积映象的同周期分歧条件及区分三种同周期分歧类型的解析判据。以De Vogelaere映象的实例说明了解析方法的应用。 关键词:  相似文献   

10.
In this paper we study periodic orbit bifurcation sequences in a system of two coupled Morse oscillators. Time-reversal symmetry is exploited to determine periodic orbits by iteration of symmetry lines. The permutational representation of Tsuchiya and Jaffe is employed to analyze periodic orbit configurations on the symmetry lines. Local pruning rules are formulated, and a global analysis of possible bifurcation sequences of symmetric periodic orbits is made. Analysis of periodic orbit bifurcations on symmetry lines determines bifurcation sequences, together with periodic orbit periodicities and stabilities. The correlation between certain bifurcations is explained. The passage from an integrable limit to nointegrability is marked by the appearance of tangent bifurcations; our global analysis reveals the origin of these ubiquitous tangencies. For period-1 orbits, tangencies appear by a simple disconnection mechanism. For higher period orbits, a different mechanism involving 2-parameter collisions of bifurcations is found. (c) 1999 American Institute of Physics.  相似文献   

11.
We generalize the sufficient condition for the stability of relative periodic orbits in symmetric Hamiltonian systems presented in [J.-P. Ortega, T.S. Ratiu, J. Geom. Phys. 32 (1999) 131–159] to the case in which these orbits have non-trivial symmetry. We also describe a block diagonalization, similar in philosophy to the one presented in [J.-P. Ortega, T.S. Ratiu, Nonlinearity 12 (1999) 693–720] for relative equilibria, that facilitates the use of this result in particular examples and shows the relation between the stability of the relative periodic orbit and the orbital stability of the associated singular reduced periodic orbit.  相似文献   

12.
A symmetric cubic map on the interval describing isolated stable or bistable orbits and different kind of bifurcation was analyzed. Stable orbits were presented by itineraries, permutation parentheses and matrices. Itineraries were used to order the cycles with respect to the parameter and also to order the coordinates of the cycle in the interval. Linear symbolic dynamics was introduced to study the periodic unstable points coexisting with stable orbits by means of a matrix of intervals. The non-zero entries of these matrices have an N-shape corresponding to the N-shape of the cubic. The characteristic polynomial of the matrix of intervals was in one-to-one correspondence with the itinerary. Equations to calculate the number of different kind of orbits were explicitly written and used to calculate those numbers for a small number of periods.  相似文献   

13.
We consider the damped and driven dynamics of two interacting particles evolving in a symmetric and spatially periodic potential. The latter is exerted to a time-periodic modulation of its inclination. Our interest is twofold: First, we deal with the issue of chaotic motion in the higher-dimensional phase space. To this end, a homoclinic Melnikov analysis is utilised assuring the presence of transverse homoclinic orbits and homoclinic bifurcations for weak coupling allowing also for the emergence of hyperchaos. In contrast, we also prove that the time evolution of the two coupled particles attains a completely synchronised (chaotic) state for strong enough coupling between them. The resulting "freezing of dimensionality" rules out the occurrence of hyperchaos. Second, we address coherent collective particle transport provided by regular periodic motion. A subharmonic Melnikov analysis is utilised to investigate persistence of periodic orbits. For directed particle transport mediated by rotating periodic motion, we present exact results regarding the collective character of the running solutions entailing the emergence of a current. We show that coordinated energy exchange between the particles takes place in such a manner that they are enabled to overcome--one particle followed by the other--consecutive barriers of the periodic potential resulting in collective directed motion.  相似文献   

14.
Nonergodic attractors can robustly appear in symmetric systems as structurally stable cycles between saddle-type invariant sets. These saddles may be chaotic giving rise to "cycling chaos." The robustness of such attractors appears by virtue of the fact that the connections are robust within some invariant subspace. We consider two previously studied examples and examine these in detail for a number of effects: (i) presence of internal symmetries within the chaotic saddles, (ii) phase-resetting, where only a limited set of connecting trajectories between saddles are possible, and (iii) multistability of periodic orbits near bifurcation to cycling attractors. The first model consists of three cyclically coupled Lorenz equations and was investigated first by Dellnitz et al. [Int. J. Bifurcation Chaos Appl. Sci. Eng. 5, 1243-1247 (1995)]. We show that one can find a "false phase-resetting" effect here due to the presence of a skew product structure for the dynamics in an invariant subspace; we verify this by considering a more general bi-directional coupling. The presence of internal symmetries of the chaotic saddles means that the set of connections can never be clean in this system, that is, there will always be transversely repelling orbits within the saddles that are transversely attracting on average. Nonetheless we argue that "anomalous connections" are rare. The second model we consider is an approximate return mapping near the stable manifold of a saddle in a cycling attractor from a magnetoconvection problem previously investigated by two of the authors. Near resonance, we show that the model genuinely is phase-resetting, and there are indeed stable periodic orbits of arbitrarily long period close to resonance, as previously conjectured. We examine the set of nearby periodic orbits in both parameter and phase space and show that their structure appears to be much more complicated than previously suspected. In particular, the basins of attraction of the periodic orbits appear to be pseudo-riddled in the terminology of Lai [Physica D 150, 1-13 (2001)].  相似文献   

15.
The three-body problem can be traced back to Newton in 1687,but it is still an open question today.Note that only a few periodic orbits of three-body systems were found in 300 years after Newton mentioned this famous problem.Although triple systems are common in astronomy,practically all observed periodic triple systems are hierarchical(similar to the Sun,Earth and Moon).It has traditionally been believed that non-hierarchical triple systems would be unstable and thus should disintegrate into a stable binary system and a single star,and consequently stable periodic orbits of non-hierarchical triple systems have been expected to be rather scarce.However,we report here one family of 135445 periodic orbits of non-hierarchical triple systems with unequal masses;13315 among them are stable.Compared with the narrow mass range(only 10-5)in which stable"Figure-eight"periodic orbits of three-body systems exist,our newly found stable periodic orbits have fairly large mass region.We find that many of these numerically found stable non-hierarchical periodic orbits have mass ratios close to those of hierarchical triple systems that have been measured with astronomical observations.This implies that these stable periodic orbits of non-hierarchical triple systems with distinctly unequal masses quite possibly can be observed in practice.Our investigation also suggests that there should exist an infinite number of stable periodic orbits of non-hierarchical triple systems with distinctly unequal masses.Note that our approach has general meaning:in a similar way,every known family of periodic orbits of three-body systems with two or three equal masses can be used as a starting point to generate thousands of new periodic orbits of triple systems with distinctly unequal masses.  相似文献   

16.
Migration of planetary systems caused by the action of dissipative forces may lead the planets to be trapped in a resonance. In this work we study the conditions and the dynamics of such resonant trapping. Particularly, we are interested in finding out whether resonant capture ends up in a long-term stable planetary configuration. For two planet systems we associate the evolution of migration with the existence of families of periodic orbits in the phase space of the three-body problem. The family of circular periodic orbits exhibits a gap at the 2:1 resonance and an instability and bifurcation at the 3:1 resonance. These properties explain the high probability of 2:1 and 3:1 resonant capture at low eccentricities. Furthermore, we study the resonant capture of three-planet systems. We show that such a resonant capture is possible and can occur under particular conditions. Then, from the migration path of the system, stable three-planet configurations, either symmetric or asymmetric, can be determined.  相似文献   

17.
宋建军  李希国 《物理学报》2001,50(9):1661-1665
从可积系统求迹公式出发,运用Einstein-Brillouin-Keller(EBK)量子化条件,导出了二维无关联振子系统周期轨道作用量量子化条件,由此发现了量子能级与周期轨道之间的对应关系.这种对应关系表明,如果两条能级对应的周期轨道的拓扑相同,这两条能级对回归函数的贡献相干.回归谱中的一个峰是量子能谱中一组与具有相同拓扑的周期轨道相对应的能级之间相干的结果,这一组能级间存在着长程关联.  相似文献   

18.
王培杰  吴国祯 《物理学报》2005,54(7):3034-3043
一个不可积混沌体系,由于扰动而遭到破坏时,存活的周期轨迹体现了体系的本质特征,是 体系的运动骨架.在一定程度上, 可以由周期轨迹来量子化不可积体系,这充分说明了 周期轨迹的重要性.而寻找周期轨迹,也就成为研究混沌体系动力学特性以及对混沌体系进 行量子化的关键问题.结合具体实例,给出了3种常用的寻找周期轨迹方法,并详细探讨了各 种方法的优缺点和适用范围. 关键词: 周期轨迹 数值方法 混沌  相似文献   

19.
For Newtonian four-body problems with equal masses, we use variational minimizing methods to prove the existence of non-collision periodic solutions such that all bodies move on two symmetric trajectories with opposite orientation; here the methods and results are simpler and more general than those of Chen [K.-C. Chen, Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal. 158 (2001) 293–318].  相似文献   

20.
Bertrand’s theorem asserts that any spherically symmetric natural Hamiltonian system in Euclidean 3-space which possesses stable circular orbits and whose bounded trajectories are all periodic is either a harmonic oscillator or a Kepler system. In this paper we extend this classical result to curved spaces by proving that any Hamiltonian on a spherically symmetric Riemannian 3-manifold which satisfies the same conditions as in Bertrand’s theorem is superintegrable and given by an intrinsic oscillator or Kepler system. As a byproduct we obtain a wide panoply of new superintegrable Hamiltonian systems. The demonstration relies on Perlick’s classification of Bertrand spacetimes and on the construction of a suitable, globally defined generalization of the Runge–Lenz vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号