首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Sun Z  Xing R  Zhao C  Huang W 《Ultrasonics》2007,46(4):303-312
A three-joint robot is directly driven by ultrasonic motors with advantage of high torque at low speed. The speed of the ultrasonic motors is actually controlled by regulating their operating frequencies. The kinematic and kinetic analyses of the robot have been carried out using Adams. Due to the lack of accurate control model of ultrasonic motors and the time-varying motor parameters, a fuzzy auto-tuning proportional integral derivative (PID) controller for the robot is experimented, in which a simple method to tune parameters of the PID type fuzzy controller on-line is developed and a new position–speed feedback strategy is proposed and implemented. The effectiveness of the proposed control strategy and fuzzy logic controller is verified by experimental investigation.  相似文献   

2.
陈建国  黄河 《应用声学》2012,(6):1530-1534
建立PID数字控制器多指标统一优化模拟设计方法;用SIMULINK仿真研究数字PID控制对模拟PID控制的复现能力和PID计算机控制系统的阶跃响应,用MATLAB仿真筛选PID参数的优化组合值;提出并建立了一种新的PID数字控制器多指标优化模拟设计方法,包括:PID初值确定方法、模拟PID优化参数MATLAB筛选方案和软件流程图、模拟PID参数转换数字PID参数的方法、SIMULINK仿真验证设计结果的有效性的方法等;研究表明,该方法可用于1~5ms采样周期的PID数字控制器多指标优化模拟设计,且能独立使用、无需PID经验数据和其它设计/整定方法;提供了4个代表性的实例设计,验证了该方法的有效性。  相似文献   

3.
以热流计校准装置为研究对象,建立了热板温度仿真模型。根据模糊控制原理和BP神经网络原理,分别设计了模糊PID控制器和BP神经网络PID控制器,并在Matlab的Simulink下进行了不同控制方法的仿真对比实验。仿真结果表明:模糊PID有更快的响应速度、更短的稳定时间,BP神经网络PID有更小的超调量。  相似文献   

4.
钟斌 《应用声学》2017,25(12):228-231
节能控制能够有效降低能耗,对保护环境等方面具有重要影响。但目前大多数电子节能控制器都是通过采用单片机技术和双向晶闸管过零触发交流调压电路对电子节能控制器进行设计。通过介绍电子的负荷特点和节能原理,分析电子节能控制器的硬件组成电路,并对电子节能控制器的主要软件程序的流程图进行设计,完成电子节能控制器设计。但这种方法节能控制效果较低,难以保证电子节能控制器性能,为此,提出一种基于模糊PID控制的嵌入式电子节能控制器设计与实现方法。首先通过对嵌入式电子节能控制器的处理器、电源电路、复位电路、系统时钟电路、JTAG接口电路、D/A转换电路、功放电路、双极性电源电路以及嵌入式电子节能控制器硬件PCB板器件布局等的设计,完成嵌入式电子节能控制器硬件设计。在此基础上,选用模糊PID控制方法对嵌入式电子节能控制器进行设计。通过分析模糊PID控制原理,介绍加入自调节因子的模糊PID控制的算法设计,以此确定输入输出隶属度函数,再利用模糊推理和模糊规则,得到电子节能控制器的模糊控制过程,从而完成嵌入式电子节能控制器的设计。实验证明,所提方法能够有效提高嵌入式电子节能控制器的节能控制效果,具有良好的使用价值。  相似文献   

5.
The number of studies on the control of fractional-order processes—processes having dynamics described by differential equations of arbitrary order—has been increasing in the past two decades and it is now ubiquitous. Various methods have emerged and have been proven to effectively control such processes—usually resulting in fractional-order controllers similar to their conventional integer-order counterparts, which include, but are not limited to fractional PID and fractional lead-lag controllers. However, such methods require a lot of computational effort and fractional-order controllers could be challenging when it comes to their synthesis and implementation. In this paper, we propose a simple yet effective delay-based controller with the use of the Posicast control methodology in controlling the overshoot of a fractional-order process of the class $\mathcal{P}:\left\{ {P\left( s \right) = {1 \mathord{\left/ {\vphantom {1 {\left( {as^\alpha + b} \right)}}} \right. \kern-0em} {\left( {as^\alpha + b} \right)}}} \right\}$ having orders 1 < α < 2. Such controllers have proven to be easy to implement because they only require delays and summers. In this paper, the Posicast control methodology introduced in the past few years is modified to minimize the overshoot of the processes step response to a level that is acceptable in control engineering and automation practices. Furthermore, proof of the existence of overshoot for such class of processes, as well as the determination of the peak-time of the open-loop response of a fractional-order process of the class P is presented. Validation through numerical simulations for a class of fractional-order processes are presented in this paper.  相似文献   

6.
In this paper, fuzzy logic and PD controllers are designed for a multi-degree-of freedom structure with active tuned mass damper (ATMD) to suppress earthquake-induced vibrations. Fuzzy logic controller (FLC) is preferred because of its robust character, superior performance and heuristic knowledge use effectively and easily in active control. A fifteen-degree-of-freedom structural system is modeled with two types of actuators. These actuators are installed on the first storey and fifteenth storey which has ATMD. The system is then subjected to Kocaeli Earthquake vibrations, which are treated as disturbances. In control, linear motors are used as the active isolators. At the end of the study, the time history of the storey displacements and accelerations, ATMD displacements, control voltages, frequency responses of the both uncontrolled and the controlled structures are presented. Performance of the designed FLC has been shown for the different loads and disturbances using ground motion of the Kobe Earthquake. The results of the simulations show a good performance by the fuzzy logic controllers for different loads and the earthquakes.  相似文献   

7.
This paper deals with active free vibrations control of smart composite beams using particle-swarm optimized self-tuning fuzzy logic controller. In order to improve the performance and robustness of the fuzzy logic controller, this paper proposes integration of self-tuning method, where scaling factors of the input variables in the fuzzy logic controller are adjusted via peak observer, with optimization of membership functions using the particle swarm optimization algorithm. The Mamdani and zero-order Takagi–Sugeno–Kang fuzzy inference methods are employed. In order to overcome stability problem, at the same time keeping advantages of the proposed self-tuning fuzzy logic controller, this controller is combined with the LQR making composite controller. Several numerical studies are provided for the cantilever composite beam for both single mode and multimodal cases. In the multimodal case, a large-scale system is decomposed into smaller subsystems in a parallel structure. In order to represent the efficiency of the proposed controller, obtained results are compared with the corresponding results in the cases of the optimized fuzzy logic controllers with constant scaling factors and linear quadratic regulator.  相似文献   

8.
This study is dedicated to design effective control schemes to suppress transverse vibration of an axially moving string system by adjusting the axial tension of the string. To this end, a continuous model in the form of partial differential equations is first established to describe the system dynamics. Using an energy-like system functional as a Lyapunov function, a sliding-mode controller (SMC) is designed to be applied when the level of vibration is not small. Due to non-analyticity of the SMC control effort generated as vibration level becoming small, two intelligent control schemes are proposed to complete the task — fuzzy sliding-mode control (FSMC) and fuzzy neural network control (FNNC). Both control approaches are based on a common structure of fuzzy control, taking switching function and its derivative as inputs and tension variation as output to reduce the transverse vibration of the string. In the framework of FSMC, genetic algorithm (GA) is utilized to search for the optimal scalings for the inputs; in addition, the technique of regionwise linear fuzzy logic control (RLFLC) is employed to simplify the computation procedure of the fuzzy reasoning. On the other hand, FNNC is proposed for conducting on-line tuning of control parameters to overcome model uncertainty. Numerical simulations are conducted to verify the effectiveness of controllers. Satisfactory stability and vibration suppression are attained for all controllers with the findings that the FSMC assisted by GA holds the advantage of fast convergence with a precise model while the FNNC is robust to model uncertainty and environmental disturbance although a relatively slower convergence could be present.  相似文献   

9.
污水生化处理过程常常受到入水流量水质变化而处于动态过程, 溶解氧浓度作为系统运行过程的一个关键变量, 采用经典的PI控制器难以保证良好的控制效果. 针对污水处理过程的溶解氧浓度控制问题, 提出了基于单神经元自适应PID算法和基于RBF神经网络两种控制器. 在国际基准Benchmark Simulation Model No.1 (BSM1)的仿真平台上进行仿真实验, 与经典PI控制器的运行结果对比, 表明了在所提出的两种控制器作用下, 溶解氧浓度具有更好的跟踪给定值能力, 控制系统具有更好的综合性能指标值.  相似文献   

10.
In an optical network, the optical signal transmitted along the lightpath may need to travel through a number of cross connect switches (OXCs), optical amplifiers, and fiber segments. While the signal propagates toward its destination, the optical components would continuously degrade the signal quality by inducing impairments. When the signal degradation is so severe that the received bit-error rate (BER) becomes unacceptably high, the lightpath would not be able to provide good service quality to a connection request. Such a lightpath, which has poor signal quality due to transmission impairments in the physical layer, should not be used for connection provisioning in the network layer. This paper presents an adaptive PID controller based on the power compensation of BP neural network to restrict the influence of the impairment power for a networked control system (NCS) with the presence of controller time-delay and power compensation at amplifiers' node firstly. Control algorithms continuously adjust their channel powers in response to dynamic information from the network links. And the controller could achieve the on-line adaptive power compensation without changing the parameters of PID controller. The results of simulation show that the proposed controller could adjust better channel power at the transmitter sites and achieve channel optical signal-to-noise ratio (OSNR) optimization with controller's time-delay.  相似文献   

11.
为了提高复杂环境条件下永磁同步电机(PMSM)控制器的动态控制性能与抗干扰能力,分析了永磁同步电机的速度-电流(或力矩)双闭环控制调速结构,提出了一种基于模糊PID控制原理的速度环控制策略。速度环运行时,模糊PID控制器首先将永磁同步电机转速的误差及误差变化率进行模糊化处理,然后依据模糊规则进行模糊推理,并自动在线整定出速度环PID的三个系数(比例系数、积分系数、微分系数),不仅减少了速度环的调节时间,也能增强抵御来自电流环(或力矩环)的干扰。仿真结果表明,当永磁同步电机的转速发生变化或负载发生扰动时,相比于传统的PID控制器,模糊PID控制器能提高系统的动态性能与鲁棒性。该方法用于永磁同步电机的控制是可行、有效的。  相似文献   

12.
针对合成孔径雷达(SAR)清晰成像的特点,为保证雷达天线波束指向稳定,设计了某型机载雷达天线稳定平台。为了消除雷达天线稳定平台控制中存在的非线性及不确定性因素的影响,提出了一种应用于雷达天线稳定平台控制系统的模糊PID控制策略。稳定平台是依据陀螺仪所采集载机的角速度,运用反向运动补偿的原理进行工作。控制策略中,在传统PID控制的基础上引入模糊控制算法,根据跟踪误差信号动态改变PID控制器参数,改善稳定平台的控制效果,完成稳定平台控制器的优化设计。仿真结果表明,优化后的模糊PID控制算法与传统PID控制算法比较,在稳定平台转速控制方面受到的外部干扰影响更小,响应速度更快。因此,基于模糊PID控制算法的雷达天线稳定平台具有更高的稳定性能。  相似文献   

13.
When the frequency range over which a reduction in vibration is desired is limited to a particular structural mode of vibration, for example, it is shown that a centralized velocity feedback controller can perform better than a decentralized controller for a given level of control effort. The decentralized controller, however, has the desirable properties of scalability and ease of implementation. A number of strategies for clustering the control locations have been proposed to exploit both the performance of the centralized controller and the scalability of decentralized controllers but these have previously been only locally optimal. This paper describes methods by which these distributed controllers may be designed to be globally optimal and gives examples of simulated results of these optimal distributed controllers.  相似文献   

14.
针对实际工业过程中固定PID参数不能适应系统特征变化的问题,提出了一种在线控制器参数自动校正方法。首先,以内模控制为基础,由系统工作数据估计得到设定值阶跃变化下系统可获得的最优累积绝对误差值(IAE),并以此建立评价当前控制器优劣的性能指标。若性能不满足要求,则触发PID参数校正算法工作,通过引入继电反馈环节使控制回路振荡,获得控制系统临界信息,再根据改进的Z-N规则计算新的PID控制器参数。最后,分别用仿真和实际液位控制系统验证所提方法的有效性。  相似文献   

15.
Large fluctuation of electric power due to high penetration of renewable energy sources such as photovoltaic and wind power generation increases the risk to make the whole power network system unstable. The conventional frequency control called load frequency control is based on PID (proportional-integral-derivative) control or more advanced centralized and decentralized/distributed control. If we could more effectively use information on the state of the other neighbor generators, we can expect to make the whole system more robust against the large frequency fluctuation. This paper proposes a fundamental framework towards the design of hierarchical distributed stabilizing controllers for a network of power generators and loads. This novel type of distributed controller, composed of a global controller and a set of local controllers, takes into account the effect of the interaction among the generators and loads to improve robustness for the variation of locally stabilizing controllers.  相似文献   

16.
为解决空间斯特林制冷机和探测器热负载不确定及存在变化的问题,提出了自适应模糊PID制冷控制。在空间环境中使用的斯特林制冷机参数会随着时间的变化而发生改变,探测器负载也会随着工作模式和工作时间的变化而变化,整个制冷系统涉及的变量多,参数非线性。采用传统的控制方法,在固定的单一条件、环境下得到的控制参数,环境和负载发生变化后容易性能变差甚至不稳定,控制精度和稳定性不能满足使用要求。设计了一种自适应斯特林制冷机控制器,通过综合自适应模糊PID控制的方法,采用粒子群优化算法调整控制参数以减小代价函数。通过仿真和试验验证算法的有效性和鲁棒性。  相似文献   

17.
基于自适应模糊控制的分数阶混沌系统同步   总被引:1,自引:0,他引:1       下载免费PDF全文
陈晔  李生刚  刘恒 《物理学报》2016,65(17):170501-170501
本文主要研究了带有未知外界扰动的分数阶混沌系统的同步问题.基于分数阶Lyapunov稳定性理论,构造了分数阶的参数自适应规则以及模糊自适应同步控制器.在稳定性分析中主要使用了平方Lyapunov函数.该控制方法可以实现两分数阶混沌系统的同步,使得同步误差渐近趋于0.最后,数值仿真结果验证了本文方法的有效性.  相似文献   

18.
This study presents a novel resonant fuzzy logic controller (FLC) to minimize structural vibration using collocated piezoelectric actuator/sensor pairs. The proposed fuzzy controller increases the damping of the structures to minimize certain resonant responses. The vibration absorber is first experimentally examined by a cantilever beam test bed for impulse and near-resonant excitation cases. Moreover, the effectiveness of the new fuzzy control design to a state-of-the-art control scheme is compared through the experimental studies. The experimental results indicate the proposed controller is highly promising for this application field. Our results further demonstrate that the fuzzy approach is much better than traditional control methods. In summary, a novel vibration absorption scheme using fuzzy logic has been demonstrated to significantly enhance the performance of a flexible structure with resonant response.  相似文献   

19.
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov–Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.  相似文献   

20.
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler–Nichols method (ZN), Modified Zeigler–Nichols method, Tyreus–Luyben tuning, Astrom–Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler–Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号