首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). In the first step, the cationic Pb(II) complex of 2,2-bipyridyl is formed which, in a second step, is adsorbed on ox-MWCNTs mainly due to electrostatic and van der Waals interactions. The Pb(II) ions were then eluted with dilute nitric acid and quantified by FAAS. The effects of pH value, mass of sorbent, concentration of 2,2-bipyridyl, stirring time, of type, concentration and volume of eluent, of eluent flow rate and sample volume were examined. Most other ions do not affect the recovery of Pb(II). The limits of detection are 240 and 60 ng L?1 for sample volumes of 100 and 400 mL, respectively. The recovery and relative standard deviation are >95 % and 2.4 %, respectively. Other figures of merit include a preconcentration factor of 160 and a maximum adsorption capacity of 165 mg g?1. The method was successfully applied to the determination of Pb(II) in spiked tap water samples. The accuracy of the method was verified by correctly analyzing a certified reference material (NCS ZC85006; lead in tomatoes).
Figure
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). Most other ions do not affect the recovery of Pb(II).  相似文献   

2.
Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L?1 for Pb(II) and <5 ng L?1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables.
Figure
In this work, grapheme oxide nanosheets were modified with amino and tri-amino groups and their application were investigated in Cd(II) and Pb(II) determination in food sample. The results show high preconcentration factor and adsorption capacities for these nanosheets.  相似文献   

3.
We describe a novel magnetic metal-organic framework (MOF) for the preconcentration of Cd(II) and Pb(II) ions. The MOF was prepared from the Fe3O4-pyridine conjugate and the copper(II) complex of trimesic acid. The MOF was characterized by IR spectroscopy, elemental analysis, SEM and XRD. A Box-Behnken design through response surface methodology and experimental design was used to identify the optimal parameters for preconcentration. Extraction time, amount of magnetic MOF and pH value were found to be critical factors for uptake, while type, volume, concentration of eluent, and elution time are critical in the elution step. The ions were then determined by FAAS. The limits of detection are 0.2 and 1.1 μg?L?1 for Cd(II), and Pb(II) ions, respectively, relative standard deviations are <4.5% (for five replicates at 50 μg?L?1 of Cd(II) and Pb(II) ions), and the enrichment capacity of the MOF is at around 190 mg?g?1 for both ions which is higher than the conventional Fe3O4-pyridine material. The magnetic MOF was successfully applied to the rapid extraction of trace quantities of Cd(II) and Pb(II) ions in fish, sediment, and water samples.
Figure
Schematic illustration of synthesized magnetic MOF-pyridine nanocomposite  相似文献   

4.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

5.
We report that magnetic multiwalled carbon nanotubes functionalized with 8-aminoquinoline can be applied to the preconcentration of Cd(II), Pb(II) and Ni(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, magnetic sorbent amount, and pH value) were selected as the main factors affecting sorption, and four variables (type, volume and concentration of the eluent; elution time) were selected for optimizing elution. Following sorption and elution, the ions were quantified by FAAS. The LODs are 0.09, 0.72, and 1.0 ng mL?1 for Cd(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations are <5.1 % for five separate batch determinations at 30 ng mL?1 level of Cd(II), Ni(II), and Pb(II) ions. The sorption capacities (in mg g?1) of this new sorbent are 201 for Cd(II), 150 for Pb(II), and 172 Ni(II). The composite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of functionalized magnetic multiwalled carbon nanotube.  相似文献   

6.
We describe the application of temperature-controlled ionic liquid based microextraction (TC-IL-ME) of lead(II) ion. The method does not require the use of an organic solvent or a ligand. Rather, the IL is directly added to the aqueous sample containing Pb(II) in a centrifuge tube, and the mixture is heated to 80 °C for 4 min. After cooling at 0 °C, the solution turns cludy due to the formation of fine droplets of the IL containing Pb(II). The IL is separated by centrifugation, acidified, and directly submitted to FAAS by microinjection. The effects of pH value, volume of IL, extraction time, temperature, sample volume and matrix were optimized to result in a preconcentration factor of 30, a detection limit of 5.8 μg L?1, and a limit of quantification of 19.3 μg L?1. The method was validated by analyzing a certified reference material (NCSZC81002B; hair). A recovery test performed with spiked samples gave values between 102 % and 105 %. The method was also used to determine Pb(II) in hair samples.
Figure
We describe the application of temperature-controlled ionic liquid based microextraction (TC-IL-ME) of lead(II) ion. The effects of pH value, volume of IL, extraction time, temperature, sample volume and matrix were optimized.  相似文献   

7.
We show that a metal-organic framework (MOF) sustained by a nanosized Ag12 cuboctahedral node can be applied to selectively extract traces of lead(II) ion from environmental water samples. The MOF was characterized by thermogravimetric and differential thermal analysis, scanning electron microscopy, FTIR, and X-ray diffraction. The effects of pH value, flow rates, of type, concentration and volume of the eluent, of break-through volume and potentially interfering ions on the separation and determination of lead were evaluated. Following desorption with EDTA, Pb(II) was quantified by FAAS. The use of the MOF results in excellent analytical figures of merit including an analytical range from 2 to 180 μg L?1 of Pb(II) (R2?>?0.99); a limit of detection of 500 ng L?1; an adsorption capacity of 120 mg g?1; an extraction efficiency of >95 %, and a relative standard deviation of <4 % (for eight separate column experiments).
Figure
In the present study, for the first time, metal-organic framework sustained by nanosized Ag12 cuboctahedral node was used for selective solid-phase extraction and ultra-trace determination of lead in water samples without any modifications on the mentioned MOF  相似文献   

8.
We describe a novel magnetic metal-organic framework (MOF) prepared from dithizone-modified Fe3O4 nanoparticles and a copper-(benzene-1,3,5-tricarboxylate) MOF and its use in the preconcentration of Cd(II), Pb(II), Ni(II), and Zn(II) ions. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Three variables (extraction time, amount of the magnetic sorbent, and pH value) were selected as the main factors affecting adsorption, while four variables (type, volume and concentration of the eluent; desorption time) were selected for desorption in the optimization study. Following preconcentration and elution, the ions were quantified by FAAS. The limits of detection are 0.12, 0.39, 0.98, and 1.2 ng mL?1 for Cd(II), Zn(II), Ni(II), and Pb(II) ions, respectively. The relative standard deviations were <4.5 % for five separate batch determinations of 50 ng mL?1 of Cd(II), Zn(II), Ni(II), and Pb(II) ions. The adsorption capacities (in mg g?1) of this new MOF are 188 for Cd(II), 104 for Pb(II), 98 Ni(II), and 206 for Zn(II). The magnetic MOF nanocomposite has a higher capacity than the Fe3O4/dithizone conjugate. This magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace quantities of heavy metal ions in fish, sediment, soil, and water samples.
Figure
A schematic diagram for synthesis of magnetic MOF-DHz nanocomposite.  相似文献   

9.
We report on the synthesis of Fe3O4-functionalized metal-organic framework (m-MOF) composite from Zn(II) and 2-aminoterephthalic acid by a hydrothermal reaction. The magnetic composite is iso-reticular and was characterized by FTIR, X-ray diffraction, SEM, magnetization, and TGA. The m-MOF was then applied as a sorbent for the solid-phase extraction of trace levels of copper ions with subsequent quantification by electrothermal AAS. The amount of sorbent applied, the pH of the sample solution, extraction time, eluent concentration and volume, and desorption time were optimized. Under the optimum conditions, the enrichment factor is 50, and the sorption capacity of the material is 2.4 mg g?1. The calibration plot is linear over the 0.1 to 10 μg L?1 Cu(II) concentration range, the relative standard deviation is 0.4 % at a level of 0.1 μg L?1 (for n?=?10), and the detection limit is as low as 73 ng L?1. We consider this magnetic MOF composite to be a promising and highly efficient material for the preconcentration of metal ions.
Figure
Magnetic metal-organic frameworks was synthesized and used as a new sorbent for lead adsorption with detection by electrothermal atomic absorption spectrometry.  相似文献   

10.
We have developed a method for the microextraction of lead(II) ion. It is based on the use of suspended zirconia nanoparticles modified with the reagent cadion. Pb(II) ions in the sample are adsorbed onto the modified zirconia nanoparticles suspended in the solution of a non-ionic surfactant. After cloud formation and phase separation by sedimentation, the surfactant rich phase was acidified and diluted to 100 μL with 3.0 mol L?1 nitric acid and ultrasonicated for a few seconds to desorb the analyte from the sorbent. The mixture was centrifuged and 10 μL of the supernatant liquid phase along with 10 μL of the Pd/Mg modifier were submitted to the electrothermal atomic absorption spectrometer. The parameters affecting the extraction efficiency were optimized by the univariable method. Under the optimized conditions, a sample volume of 40 mL resulted in an enhancement factor of 384 and a detection limit (defined as 3Sb/m) of 2.2 ng L?1. The method was successfully applied to the determination of Pb(II) in water, tea and rice samples. Accuracy was determined by the recovery experiments and the analysis of two certified reference materials.
Figure
A new microextraction method for lead (II) is developed. It is based on the use of suspended zirconia nanoparticles modified with the reagent cadion. The method was successfully applied to the determination of the Pb(II) in water, tea and rice samples. Accuracy was determined by the recovery experiments and the analysis of two certified reference materials.  相似文献   

11.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

12.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

13.
A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350???g?L-1 of Pb(II), and between 2.4 and 520???g?L-1 of Cr(III) for an 800-mL sample. The detection limit (3?s, N?=?10) for Pb(II) and Cr(III) ions is 0.43 and 0.55???g?L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples.
Figure
Recovery percentage of Pb(II) and Cr(III) ions at different solution volumes.  相似文献   

14.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

15.
Multiwalled carbon nanotubes were grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) and employed for solid phase extraction and preconcentration of trace lead ions prior to its determination by inductively coupled plasma optical emission spectrometry. The material was characterized by FT-IR and Raman spectroscopy, thermosgravimetric and elemental analysis. The effects of pH value, shaking time, sample volume, elution conditions and potentially interfering ions were investigated. Under the optimum conditions, the maximum adsorption capacity is 38?mg?g?1 of Pb(II), the detection limit is 0.32?ng?mL?1, the enrichment factor is 60, and the relative standard deviation is 3.5% (n?=?6). The method has been applied to the preconcentration of trace amounts of Pb(II) in environmental water samples with satisfactory results.
Figure
Oxidized multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine (MWCNTs-TAA) is prepared and employed as solid phase extraction sorbent to determinate the trace Pb(II) in water samples. The method has been applied to the preconcentration of trace amount of Pb(II) in water samples with satisfactory results.  相似文献   

16.
We have developed a fast method for sensitive extraction and determination of the metal ions silver(I), gold(III), copper(II) and palladium(II). Fe3O4 magnetic nanoparticles were modified with polythiophene and used for extraction the metal ions without a chelating agent. Following extraction, the ions were determined by flow injection inductively coupled plasma optical emission spectrometry. The influence of sample pH, type and volume of eluent, amount of adsorbent, sample volume and time of adsorption and desorption were optimized. Under the optimum conditions, the calibration plots are linear in the 0.75 to 100 μg L?1 concentration range (R2?>?0.998), limits of detection in the range from 0.2 to 2.0 μg L?1, and enhancement factors in the range from 70 to 129. Precisions, expressed as relative standard deviations, are lower than 4.2 %. The applicability of the method was demonstrated by the successful analysis of tap water, mineral water, and river water.
Figure
In the present work, polythiophene-coated Fe3O4 nanoparticles have been successfully synthesized and were applied as adsorbent for magnetic solid-phase extraction of some precious metal ions.  相似文献   

17.
A method was developed for the determination of cadmium(II) by ligand-less solid phase extraction that is based on the direct retention of Cd(II) in a mini-column filled with a silica gel modified with an amino-functionalized ionic liquid. The effects of pH, sample volume and its flow rate, eluent concentration and its volume, the flow rate of eluent, and of potential interferences on extraction and desorption were optimized. Following its determination by electrothermal atomic absorption spectrometry, the detection limit for Cd(II) is 8.9 ng L?1, and the relative standard deviation is 2.3 % (at 1.0 ng mL?1; for n?=?5). The method was applied to the analysis of Cd(II) in a certified reference material (laver; GBW10023), and the recoveries ranged from 97.0 to104.0 %
Figure
◆ Amino-functionalized ionic liquid modified silica gel (NH2-IL/SG) obtained a better absorption for Cd(II) than bare silica gel in the tested pH range due to electrostatic interaction between amino groups and Cd(II).  相似文献   

18.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

19.
We report on the application of emulsification-based dispersive liquid microextraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L?1, the limit of detection (at S/N?=?3) is 30 pg L?1, the relative standard deviations for seven replicate analyses (at 0.56 μg L?1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination.
Figure
Emulsification based dispersive liquid microextraction is presented for determination of cadmium in water samples  相似文献   

20.
Ion pair solid phase extraction was applied to the simultaneous preconcentration of iron and antimony. The ion pairs consisting of FeCl4 ? or SbCl4 ? anions and the benzyldimethyltetradecyl ammonium cation were formed on the surface of multi-walled carbon nanotubes, then eluted with nitric acid, and the elements finally quantified by ETAAS. The adsorption capacities of the impregnated MWCNTs are 9.2 mg g?1 for iron and 27.5 mg g?1 for antimony. The following analytical figures of merit were determined for iron and antimony, respectively: Enrichment factors of 210 and 230, assay precisions of ±5.3 % and ±4.8 %, linear calibration plots from 0.7 to 9.4 and 13.0 to 190 ng L?1, and detection limits of 0.17 and 3.5 ng L?1. The method was applied to the determination of iron and antimony in human hair, synthetic sample, and to the certified reference materials gold ore (MA-1b) and trace elements in water (SRM 1643d).
Figure
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号