首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Arbuzov reaction of bromo-substituted benzyl bromides and trialkyl phosphites in benzene gave high yields of dialkyl bromo-substituted benzyl phosphonates, and —CH2CH2CH2CH3). The structural assignments of these phosphonates were confirmed by 1H nmr, 13C nmr, ir and mass spectral analysis.  相似文献   

2.
 Because of the low stability of the benzyl ester linkage in benzyl 1,2:3,5-di-O-benzylidene-α-D-glucofuranuronate during the removal of the benzylidene groups by acid hydrolysis and/or hydrogenolysis, 4-methoxybenzylidene groups were used to block the free hydroxyl groups of D-glucuronic acid. Several benzyl esters of D-glucuronic acid were prepared, and their relative rates of acid catalyzed hydrolysis were determined by liquid-chromatographic separation of the reaction mixture and subsequent diode array detection.  相似文献   

3.
Summary.  Because of the low stability of the benzyl ester linkage in benzyl 1,2:3,5-di-O-benzylidene-α-D-glucofuranuronate during the removal of the benzylidene groups by acid hydrolysis and/or hydrogenolysis, 4-methoxybenzylidene groups were used to block the free hydroxyl groups of D-glucuronic acid. Several benzyl esters of D-glucuronic acid were prepared, and their relative rates of acid catalyzed hydrolysis were determined by liquid-chromatographic separation of the reaction mixture and subsequent diode array detection. Received May 22, 2000. Accepted (revised) July 17, 2000  相似文献   

4.
Ramesh Naik 《合成通讯》2013,43(21):2823-2826
Primary benzyl amines, upon treatment with aq. NaNO2 and appropriate organic acids at 0–5°C, give their respective benzyl esters.  相似文献   

5.
Rates of solvolysis of benzyl chloride and of substituted benzyl chlorides have been measured in an acetone-water mixture (acetone mole fraction 0.147) at pressures ranging from atmospheric to 1 kbar. Pressure studies have also been made for p-methyl benzyl chloride in various acetone-water mixtures. Measurements have also been made of the partial molar volumes of the reactants. The plots of log k against pressure are fitted to a second-degree polynomial in P, and values of ΔV? and (δΔV/P)T are obtained. The ΔV? values are all negative, having values ranging from ?18 to ?24 cc/mole. The results are interpreted on the view that the mechanisms are SN2(1), i.e. are towards the SN1 end of the SN2 spectrum of behavior. The ΔV? values steadily become more negative in the series p? CH3, H, p? Cl, pNO2, and this is interpreted in terms of the greater spreading of positive charge in the p? CH3 case and in terms of greater SN2(2) character in the p? NO2 case. The ΔV? values go through a minimum as the solvent composition is varied, a result that is related to the existence of a corresponding maximum in the partial molar volumes of the reactant. The (δΔV?P)T values show a negative correlation with ΔV?, suggesting, as expected, that the more compact activated complexes are the least compressible.  相似文献   

6.
A combination of iodic acid with ammonium dichromate in the presence of wet SiO2 was used as an efficient oxidizing agent for the transformation of benzyl alcohols to the corresponding aldehydes and ketones in n-hexane or without a solvent at room temperature with excellent yields.  相似文献   

7.
Benzyl alcohol is a naturally occurring aromatic alcohol and has been widely used in the cosmetics and flavor/fragrance industries. The whole‐cell biotransformation for synthesis of benzyl alcohol directly from bio‐based L‐phenylalanine (L‐Phe) was herein explored using an artificial enzyme cascade in Escherichia coli. Benzaldehyde was first produced from L‐Phe via four heterologous enzymatic steps that comprises L‐amino acid deaminase (LAAD), hydroxymandelate synthase (HmaS), (S)‐mandelate dehydrogenase (SMDH) and benzoylformate decarboxylase (BFD). The subsequent reduction of benzaldehyde to benzyl alcohol was achieved by a broad substrate specificity phenylacetaldehyde reductase (PAR) from Solanum lycopersicum. We found the designed enzyme cascade could efficiently convert L‐Phe into benzyl alcohol with conversion above 99%. In addition, we also examined L‐tyrosine (L‐Tyr) and m‐fluoro‐phenylalanine (m‐f‐Phe) as substrates, the cascade biotransformation could also efficiently produce p‐hydroxybenzyl alcohol and m‐fluoro‐benzyl alcohol. In summary, the developed biocatalytic pathway has great potential to produce various high‐valued fine chemicals.  相似文献   

8.
The rates of reactions of N‐substituted benzyl amines with benzyl bromide were measured using a conductivity technique in methanol medium. The reaction followed a total second‐order path. The end product of the reaction is identified as dibenzyl alkyl amine (C6H5CH2N(R)CH2C6H5). The rates increased with a decrease in the electron‐donating capacity or with an increase in the Taft σ* value of electron‐donating alkyl substituents (R) such as t‐butyl (σ* = ?0.3), i‐propyl (σ* = ?0.19), n‐butyl (σ* = ?0.13), and ethyl (σ* = ?0.1) on nitrogen of the amine until the Taft σ* value becomes zero for the methyl group ( = 0.00), and then the rates decreased with an increase in the electron‐withdrawing capacity or with an increase in the Taft σ* value of electron‐withdrawing substituents (R) such H and C6H5 ( = 0.49 and = 0.6). The locus of the Taft polar free energy relationship has a maximum near the point for N‐methyl benzyl amine, showing that there is a sharp change in the rate‐determining step. A mechanism involving formation of an SN2‐type transition state between the amine nucleophiles and the benzyl bromide and its subsequent decomposition is proposed. Activation parameters were calculated and are discussed.  相似文献   

9.
Benzyl-substituted boronates and borates are widely employed as mild sources in radical or anionic transfer reactions of benzyl entities. In this process the B−C bond to the benzyl moiety is essentially ruptured. In contrast, reactions with retention of the B−C bond are poorly investigated although several other reactive sites in benzyl–boron systems are clearly inherent. In this respect, the novel reactivity of the representative borane adduct IiPr−BH2Bn [IiPr=:C{N(iPr)CH}2, Bn=CH2C6H5] is demonstrated. Dihalogenation of the BH2 entity is observed with BCl3 and BBr3, whereas BI3 either affords IiPr−BHI2 or proceeds with borylation of the aromatic phenyl ring to give a hydride-bridged bisborylated species. The photochemical mono- and dihalogenation of the benzylic CH2 group was demonstrated with elemental bromine Br2. The brominated product IiPr−BBr2−CHBr−C6H5 was borylated at the benzylic carbon atom in an umpolung event with BI3 to afford the zwitterion IiPr−BI−CH(BI3)−C6H5.  相似文献   

10.
The inhibition of factor XIa (FXIa) is a trending paradigm for the development of new generations of anticoagulants without a substantial risk of bleeding. In this report, we present the discovery of a benzyl tetra-phosphonate derivative as a potent and selective inhibitor of human FXIa. Biochemical screening of four phosphonate/phosphate derivatives has led to the identification of the molecule that inhibited human FXIa with an IC50 value of ∼7.4 μM and a submaximal efficacy of ∼68 %. The inhibitor was at least 14-fold more selective to FXIa over thrombin, factor IXa, factor Xa, and factor XIIIa. It also inhibited FXIa-mediated activation of factor IX and prolonged the activated partial thromboplastin time of human plasma. In Michaelis-Menten kinetics experiment, inhibitor 1 reduced the VMAX of FXIa hydrolysis of a chromogenic substrate without significantly affecting its KM suggesting an allosteric mechanism of inhibition. The inhibitor also disrupted the formation of FXIa – antithrombin complex and inhibited thrombin-mediated and factor XIIa-mediated formation of FXIa from its zymogen factor XI. Inhibitor 1 has been proposed to bind to or near the heparin/polyphosphate-binding site in the catalytic domain of FXIa. Overall, inhibitor 1 is the first benzyl tetraphosphonate small molecule that allosterically inhibits human FXIa, blocks its physiological function, and prevents its zymogen activation by other clotting factors under in vitro conditions. Thus, we put forward benzyl tetra-phosphonate 1 as a novel lead inhibitor of human FXIa to guide future efforts in the development of allosteric anticoagulants.  相似文献   

11.
Flash vacuum pyrolysis of benzyl benzoate ( 3 ) at temperatures in the range 750–900 °C and at 102 torr gave diphcnylmethane ( 5 ) as the major product with toluene ( 6 ) and eight other trace products, namely bipbenyl ( 7 ), dibenzyl ( 8 ), 2-, 3-, 4-phenyltoluenes ( 9,10,11 , respectively), fluorcne ( 12 ), benzyl alcohol ( 4 ) and benzaldehyde ( 13 ). The mechanism of formation of these products is proposed to involve benzyl and phenyl radicals.  相似文献   

12.
The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states, the vertical (Tv) and adiabatic (T0) excitation energies of the lower states, and the dissociation reaction pathways on the potential energy surfaces (PES) of SI, TI and T2 states. The calculated results clearly elucidated the photodissociation mechanism of BzCl, and indicated that the photodissociation on the PES of T1 state is the most favorable.  相似文献   

13.
周飞 《分子催化》2023,37(4):397-404
石墨相氮化碳(g-C3N4)是一类非金属聚合物半导体材料, 具有良好的可见光响应、 优异的化学稳定性和可调节的能带结构, 在光催化分解水制氢、 空气净化、 环境修复等领域有着广阔的应用前景. 目前, g-C3N4光催化分解水的研究主要聚焦析氢半反应, 而牺牲试剂的氧化反应以及光生空穴则未被加以利用. 光催化苯甲醇氧化反应具有较高的选择性, 在光催化制氢的同时还能够获得苯甲醛. 我们结合最新国内外研究成果, 系统地综述了g-C3N4在光催化苯甲醇氧化耦合制氢方面的应用, 从分子改性、 显微结构及缺陷调控、 非金属元素掺杂、 金属负载和复合材料设计等5个方面介绍了g-C3N4光催化苯甲醇氧化提升性能的研究策略. 重点总结了g-C3N4的结构和光生载流子分离效率对催化性能的影响, 并对g-C3N4光催化苯甲醛氧化耦合制氢的后续发展进行了展望.  相似文献   

14.
A simple, precise and sensitive reverse-phase high performance liquid chromatographic (RP-HPLC) method has been developed for the quantitation of bifonazole, an imidazole antifungal, simultaneously with benzyl alcohol, used as preservative, in pharmaceutical formulations. Method employed Zorbax Eclipse XDB-C18 (250×4.6 mm i.d., 5 m) column, methanol - ammonium acetate (pH 2; 65 mM) (65:35, v/v, pH* 3.6) as mobile phase with flow rate of 1 mL min–1 and variable UV detection at 220 and 252 nm. The proposed method was validated by testing its linearity, selectivity, recovery, repeatability, LOD/LOQ values and it was successfully employed for the determination of bifonazole and benzyl alcohol in pharmaceutical cream-based formulations.  相似文献   

15.
Green oxidation of benzyl halides to the corresponding aldehydes or ketones was achieved in aqueous media using trimethylamine N-oxide generated in situ from trimethylamine and H2O2. The yield of the reaction was excellent and the workup was simple.  相似文献   

16.
苄基磺酸接枝MCM-41介孔分子筛的合成与表征   总被引:1,自引:0,他引:1  
陈静  韩梅  孙蕊  王锦堂 《无机化学学报》2006,22(9):1568-1572
在采用溶胶-凝胶法合成纯硅MCM-41基础上,经过两步后合成处理,在纯硅MCM-41上接枝苄基磺酸,并通过X射线衍射、低温氮气吸附、红外光谱、元素分析、热重分析和酸度滴定,对所得样品进行了表征。结果表明,经过苯甲醇、氯磺酸两步接枝处理,苄基及磺酸成功地接入MCM-41上,并保持MCM-41的介孔结构,接枝后的磺酸型MCM-41比表面积和孔容均减小,分别为 976 m2·g-1和0.42 cm3·g-1,酸量为4.2 mmol·g-1。  相似文献   

17.
Abstract

Selective acetolysis of primary benzyl ethers of O-benzyl C-glucosides has been investigated. β-anomers were shown to give fully acetylated compounds, while the α-anomers remained unchanged under the same conditions. The products were assigned by IR, 1H NMR, 13C NMR, and EI-MS.  相似文献   

18.
Summary.  Palladium(II) complexes of the general formula PdCl2 (PR3)2 with PR3 = { P(OPh)3}, P(O-4-MeC6H4)3, P(O-2-MeC6H4)3, and PPh2(OBu) were reduced by NEt3 in chloroform or benzene to Pd(0) complexes Pd(PR3)4 and Pd(PR3)x(NEt3) 4−x . The same reaction performed in the presence of air gave CH3CHO or CH3CH2CHO when NPr3 was used instead of NEt3. Pd(P(OPh)3)4 reacted with benzyl bromide affording the oxidative addition product cis-PdBr(CH2Ph)(P(OPh)3)2. The reaction of PdCl2(P(OPh)3)2 with benzyl bromide was observed only in the presence of NEt3, and a dimeric complex of [PdBr(CH2Ph)(P(OPh)3)]2 was identified as the reaction product. Both benzyl complexes reacted fast with CO (1 atm) to form acyl complexes exhibiting ν(CO) bands at 1709 and 1650 cm−1.  相似文献   

19.
The paradigm that the cleavage of the radical anion of benzyl halides occurs in such a way that the negative charge ends up on the departing halide leaving behind a benzyl radical is well rooted in chemistry. By studying the kinetics of the reaction of substituted benzylbromides and chlorides with SmI2 in THF it was found that substrates para‐substituted with electron‐withdrawing groups (CN and CO2Me), which are capable of forming hydrogen bonds with a proton donor and coordinating to samarium cation, react in a reversed electron apportionment mode. Namely, the halide departs as a radical. This conclusion is based on the found convex Hammett plots, element effects, proton donor effects, and the effect of tosylate (OTs) as a leaving group. The latter does not tend to tolerate radical character on the oxygen atom. In the presence of a proton donor, the tolyl derivatives were the sole product, whereas in its absence, the coupling dimer was obtained by a SN2 reaction of the benzyl anion on the neutral substrate. The data also suggest that for the para‐CN and CO2Me derivatives in the presence of a proton donor, the first electron transfer is coupled with the proton transfer.  相似文献   

20.
The overall rate equation for the production of benzyl ether by phase transfer catalyzed strongly alkaline hydrolysis of benzyl chloride in the pseudo-steady state was derived. The effects of the concentrations and the sizes of the alkyl substituents of the catalysts, the concentration of hydroxide ions in the aqueous phase, the volume-fraction of the organic phase, the reaction temperature and the stirring speed on the production rate of benzyl ether can be explained with the derived rate equation. Under the conditions of 0.842 mol benzyl chloride, 50% aq. NaOH (2.5 mol NaOH), 42.2 mmol Bz(C2H5)3NCl, 70 °C and 500 rpm, the reactions proceeded to nearly 100% benzyl ether within 2 h. The cocatalyst, NaI, is effective for improving the reaction rate, suitable amounts being ~ 5% of the substrate, benzyl chloride. The decomposition rate of the practical catalyst, Bz(C2H5)3NCl, in 30% aq. NaOH at 70 °C is only about 3% per day. The conditions for producing benzyl ether by phase transfer catalyzed hydrolysis of benzyl chloride can be obtained from the rate equation and the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号